0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Армирование монолитных стен СНИП

Армирование монолитных стен: порядок выполнения работ, определение размера опалубки и ее монтаж, советы профессионалов

Армированные монолитные конструкции впервые в России использовали в 1802 году при постройке Царскосельского дворца. Материалом служили металлические стрежни. Монолитные железобетонные конструкции позволяют возводить здания с разным уровнем сложности и конфигурации. Часто такую технологию используют при строительстве резервуаров, фундаментов, перекрытий, стен.

Преимущества и недостатки монолитно-каркасной технологии

Монолитные армированные стены имеют такие преимущества:

  • цельная конструкция без швов прочная и надежная, ее не продувает, не образуются температурные мосты;
  • гладкая ровная поверхность позволяет приступить к отделочным работам без предварительной подготовки;
  • сооружения здания в короткие сроки;
  • монолитные дома имеют свободную планировку;
  • повышенный срок службы железобетонных сооружений;
  • сложные архитектурные криволинейные элементы и арки выполняются достаточно легко.

Недостатки монолитных стен:

  • низкая звукоизоляция;
  • обязательное утепление стен;
  • способность бетона проводить вибрации.

В чем необходимость армирования?

Для того чтобы повысить прочность бетона и сократить его количество, используют арматуру. В теории, в роли арматуры может выступать любой материал. Но на практике чаще всего используют сталь и композит.

Композит — это комплекс материалов. Основой могут служить базальтовые или углеродные волокна, которые заливают полимером. Такая арматура обладает небольшим весом и не подвержена коррозии.

Сталь, по сравнению с композитом, имеет гораздо большую прочность и относительно невысокую стоимость. В процессе армирования монолитных стен используют швеллеры, уголки, двутавровые балки, рифленые и гладкие прутья. В случае создания сложных строительных конструкций для армирования применяют металлические сетки.

Арматура бывает разной формы. Но чаще всего в продаже можно встретить стержневую. При строительстве малоэтажных зданий обычно используют рифленые прутья. Они имеют низкую цену и отличное сцепление с бетоном, что делает их очень популярными среди покупателей. Стальные стержни, которые используют при строительстве монолитных конструкций, обычно имеют диаметр в диапазоне 12-16 мм.

Нюансы армирования

При самостоятельном армировании монолитных стен следует учесть такие факторы:

  • При создании арматурной сетки лучше всего применить новые стальные стержни, потому что они могут выдержать большие нагрузки.
  • В случае обнаружения ржавчины на новых стрежнях не следует ее удалять. Это может привести к ухудшению сцепки бетона и прутьев.
  • Чтобы разрезать стержни, лучше всего применить болгарку. Если стрежень нужно согнуть, то место сгиба предварительно прогревают непосредственно перед самой манипуляцией. Но это делать крайне не рекомендуется. Как в случае со сваркой, материал теряет прочность.
  • Если уже бетон был залит в опалубку, то арматуру ставить нельзя. В случае если порядок работ не соблюден, то весь процесс нужно начинать сначала.
  • Наращивать арматурную сетку по длине или высоте также не рекомендуется, так как при сильных нагрузках в местах наращивания могут образоваться разрывы. Если же таких нагрузок не предвидится, то нужно выполнить эти работы максимально качественно.

На стены помещений, расположенных ниже уровня грунта, будет сильная нагрузка. Поэтому для монтажа сетки нужно выбрать качественную арматуру стандартных размеров, а узлы армирования монолитных стен стоит выполнять из специальной проволоки.

Опалубка и ее монтаж

Возведение монолитных стен происходит с помощью опалубки. По своей сути — это форма для заливки бетонной смеси. Делится конструкция на два вида:

  • съемная — удаляется после застывания бетонной смеси;
  • несъемная — является частью стены, придавая ей дополнительные качества.

Чаще всего применяют опалубки из вспененного полистирола. Он выпускается в виде блоков, которые соединены замками. Пенополистирол утепляет слой бетона и увеличивает звукоизоляцию.

Монтаж несъемной опалубки достаточно прост:

  • На гидроизоляционный слой фундамента укладывают блоки опалубки. Это нужно сделать таким образом, чтобы сквозь них проходила арматура, скрепленная с фундаментом. В процессе укладки первого ряда блоков оформляются откосы для дверей и отводы внутренних стен.
  • Второй ряд блоков должен перерыть все вертикальные швы первого ряда. То есть способ укладки очень похож на кладку кирпича. Замки, находящиеся внизу и вверху кромок, должны соединяться без зазоров.
  • Третий ряд — самый важный. Именно по нему выравниваются все слои блоков.

На количество необходимого материала влияет площадь, которую будут заливать бетонной смесью, и толщина стенок. Чем больше будет бетона, тем больше нужно опорных стенок.

По сути, процесс расчета опалубочной системы не сложен. Размер конструкции вычисляют способом деления на высоту и ширину доски. К примеру, среднее количество досок для монтажа 1 м 3 опалубки — 40-43 шт.

Типичные размеры блоков из пенополистирола:

  • длина — 1,2 м;
  • ширина — 25 или 30 см;
  • высота — 25, 30 или 40 см;
  • толщина внутренней стенки — 5 см;
  • толщина наружной стенки — 5 или 10 см.

Армирование монолитных стен и простенков

Процент армирования от сечения стены около 10 %. Для этого процесса применяют армирующие сетки из стали или каркас (для повышенной прочности).

Укрепление арматурой чаще всего выполняют по горизонтали и вертикали. Для этого используют прутья диаметром 6-8 мм. Располагают их симметрично у боковых стен. Горизонтальные стержни с вертикальными у противоположных боковых стен соединяют поперечными связями. Нужны такие соединения для того, чтобы предотвратить выпучивание вертикальной арматуры. Армирование углов монолитной стены выполняется обязательно. Для этого желательно использовать П-образные хомуты. Они дают необходимое скрепление концов горизонтальных стержней и защищают вертикальные от выпучивания.

Простенок — это часть стены между двумя проемами (окна, двери). Армирование маленьких простенков в монолитных стенах происходит с помощью плоских сеток, монтируемых с двух сторон. В случае если перекрытия сборные, то используют сборный каркас. Плоские стенки первого простенка нужно объединить пространственными каркасами соединив стержни.

Типовая последовательность по армированию стен подвала

Укрепление стен подвала необходимо в любом случае и независимо от их толщины. Армирование монолитных стен подвала проходит следующим образом:

  • Покупка проволоки диаметром 3 мм. Сетку для армирования можно купить в виде рулонов (наиболее распространенный вариант). Именно ее чаще всего применяют для стяжки пола или армирования стен.
  • Подготовка инструмента. Обычно достаточно проволоки и кусачек. Но ускорит процесс вязки сетки пистолет для вязки арматуры. Он обладает электродвигателем, запускающим протяжку проволоки.
  • Производятся нужные расчеты. Обязательно берется во внимание уровень залегания подземных вод при расчете толщины стен. Если армирование монолитной стены подвального помещения нужно провести ниже уровня грунтовых вод, то плита основания должна быть толщиной от 20 см и выходить за стены на 40 см. При условии, когда подземные воды далеки от основания, то требования следующие: толщина стен подвала с глубиной размещения 1,5-2,5 м может быть от 20 до 40 см, а нижняя стена может быть несиловая, и допускается выступ за контур постройки на 10 см.
  • Очищение опалубки. По факту, это удаление строительной пыли и грязи из конструкции.

  • Изготовление армирующей сетки. На этом моменте важно правильно определить размер ячейки. Для стен подвала он может быть в диапазоне 25-35 см. Соответственно, чем меньше звено, тем прочнее и надежнее сетка. Но ячейки менее 5 см не допускаются, так как возможно возникновение пустот при заливке бетонной смеси.
  • Прокладка арматурной сетки в опалубку. Необходимую прочность монолитной стене придаст армирование сеткой в два слоя. Важно, чтобы диаметр проволоки был не меньше 12 мм, а шаг и по горизонтали и по вертикали не больше 40 см. Оба слоя сетки нужно соединить в шахматном порядке через каждые две ячейки. Для соединения используют проволоку такого же диаметра. Кроме того, арматура и ее элементы не должны соприкасаться со стенками опалубки.
  • Проверка правильности монтажа армирующей сетки. Арматура должна быть размещена строго вертикально. Допустимое отклонение 1-2 мм. Причина этого — давление почвы на стены подвала. Правильность расположения можно проверить строительным или лазерным уровнем.
  • Заливка бетона и засыпание почвы возле стен. Чтобы обеспечить антикоррозийную защиту арматуры, в бетон добавляют специальные растворы.

Усиление проемов

Любой проем является слабым местом конструкции. Поэтому периметры оконных и дверных проемов обязательно укрепляют дополнительно. Если это сделать неправильно, то конструкция растрескивается и деформируется.

Размеры и тип металлоконструкций для усиления проемов подбирается согласно точным расчетам. Нужно учитывать все параметры, которые влияют на целостность конструкции здания: материал стен, этажность, размер проема, тип основания, вес кровли.

Существует несколько способов армирования проемов в монолитной стене:

  • Армирование в один ряд с использованием швеллеров. Это стандартный способ, который заключается в анкерном креплении к стене металлической рамы. Ширина швеллера должна немного больше ширины стены.
  • Двухрядное армирование. Суть заключается в накладке двух швеллеров на стену, которые потом дополнительно крепятся и привариваются к металлическим пластинам.
  • Усиление с помощью уголков. К краям проема крепятся металлические элементы. Их внутренняя часть соединяется с помощью полосы, которая зафиксирована в стене. Стойки в таких случаях стягивают шпильками или сваривают.
  • Коробковое усиление. Швеллеры приваривают параллельно и вертикально. В качестве верхнего элемента служит силовой двутавр.
  • Армирование из уголка. Применяют, когда необходимо усиление нестандартных проемов и отверстий.
  • Комбинирование способов. Зависит от конструктивных особенностей проемов.

Армирование отверстий в монолитной стене — довольно сложный и ответственный процесс, тем более когда проем необходимо сделать в несущей стене. Неправильно выполненное устройство проема может привести к значительному снижению надежности здания. Поэтому такие процессы лучше производить с помощью специалиста.

Краткий алгоритм усиления проемов:

  • Разметка будущего отверстия и армирования.
  • Установка временных подпорок.
  • Непосредственное усиление с использованием металлических профилей.
  • Резка.

Армирование цокольного этажа

Нулевой этаж чаще всего имеет высоту от 1,5 до 2,5 м. Армирование монолитной стены цокольного этажа проходит следующим образом:

  • Устанавливают несъемную опалубку из пластика. Она одновременно служит и утеплителем для стен.
  • При установке опалубки прокладываются проемы для окон и дверей, а также гильзы из металла для прокладки коммуникаций.
  • Армировать нужно в продольном направлении стен. При этом металлические стержни связываются с уже установленными вертикальными прутьями. Сечение стержня не менее 10 мм.
  • При наличии необходимой техники и материалов бетон лучше заливать сразу же. Если возможности такой нет, то бетонную смесь заливают слоями. При втором варианте каждый последующий слой заливается через трое суток после предыдущего. Набор требуемой твердости происходит в течение 28 суток.
  • После окончательного затвердения можно приступать к дальнейшим строительным работам.

Полезное видео по теме и выводы

В дополнение полезное видео по теме армирования.

В заключение стоит сказать, что сам процесс армирования монолитных стен не сильно сложен. Но требуется правильный расчет, точность выполнения работ и качественный материал.

Армирование монолитных конструкций

Для начала немного истории. Изобретение железобетона началось с открытия цемента. Первый цемент был получен в 1796 году англичанином по фамилии Паркер. Цемент был получен путем обжига глины и известкового камня. Полученные смеси на основе цемента с добавлением песка и щебня применялись в строительстве для устройства перегородок, малопролетных балок. Материал получился высокопрочным на сжатие, огнестойким, достаточно дешевым. Применение его было ограниченно низкой прочностью материала на разрыв.

Некоторые принципиально похожие на современный железобетон конструкции применялись даже в 1802 году при строительстве Царскосельского дворца в г. Царское село, пригороде Санкт-Петербурга. Тогда были использованы металлические стержни совместно с вяжущим веществом — известковым тестом для устройства перекрытий дворца.

Однако до совмещения бетона и арматуры было еще далеко. Как ни странно предложения по устройству конструкций из бетона, пронизанного металлическими стержнями поступавшие от строителей: в 1854 году английский штукатур Вильям Вилкинсон получил патент на использование железобетона и даже возвел из него небольшой домик, а в 1861 году независимо от него француз Куанье издал брошюру «Применение бетона в строительном искусстве» в которой описывал применение металлических стержней совместно с бетоном, не получили никакого распространения и массового применения.

А вот честь открытия железобетона почему-то принадлежит садовнику Жозефу Монье. Он изготавливал из цементобетона декоративные кадки для садовых деревьев, когда они трескались от прорастающих корней решил скрепить из железными обручами, а чтобы не портить внешний вид обручи снова обмазал пескобетоном. Получилась очень удачная конструкция, Монье как весьма предприимчивый человек начал думать над применением данной системы, разработал и построил мост, запатентовал железобетонные балки и в конце концов в 1880 году получил общий патент на применение железобетона. Не будучи строителем он не мог правильно оценить взаимодействие и совместную работу металла и бетона, в частности он рекомендовал располагать армирующие сетки по центру конструкции.

Но тут уже в дело вступили профессиональные строители усовершенствовавшие технологию, рассчитавшие и правильно расположившие армирующие сетки в бетоне. Не могу здесь не упомянуть немецкого инженера Гюстава Вайса, который выкупил патент Монье, произвел исследования конструкций соединяющих железо и бетон и в 1887 году перенес арматуру из середины бетонной плиты в ее нижнюю часть тем самым значительно увеличив ее рабочий пролет и положив начало современному монолитному строительству.

Итак, к чему же пришло современное представление о железобетоне. Здесь я расскажу о том как правильно в соответствии с нормами современного строительства произвести армирование конструкции и как проверить правильность выполнения этих работ если вы являетесь Заказчиком.

Основные направления применения монолитных конструкций — это различные виды балок. Да, и перекрытие — тоже технически балка, просто широкая и тонкая. Рассчитывается данная конструкция в сечении по пролету. Рассмотрим картинку:

Как видно в продольном сечении есть несколько зон. Верхняя часть белки в пролете — сжимается, нижняя — растягивается. Над опорами все ровно наоборот. Конечно если балка свободная, то есть ее опирание на опоры не защемлено, то растяжение над опорной части незначительно.

Как я писал выше в железобетоне на растяжение работает именно арматура, бетон же славится своей прочностью на сжатие.

На нижнем рисунке указан армирующий стержень который воспринимает нагрузку растяжения в нижней части пролета и не дает конструкции разрушится.

Теперь немного физики на пальцах. Все мы инстинктивно понимаем закон рычага, тот самый рычаг которым Архимед грозился перевернуть землю. Как ломается балка или другая конструкция. Мне почему-то легче представить это в вертикальном положении. Вот есть стержень, например карандаш, нижний конец жестко зажат в тиски, а верхний я начинаю изгибать. Естественно усилие воздействует на ту точку, которая зажата в тиски, чес длиннее карандаш тем легче его сломать, у моего воздействия больший рычаг.

Сопротивляется моему воздействию карандаш сжимая свою часть, направленную в сторону моего воздействия, растягивая противоположную. Рычаг этого сопротивления связан с толщиной этого карандаша. При этом если глянуть вглубь, то внутренние части стержня растягиваются и сжимаются меньше, то есть их вклад в сопротивление меньше.

Если развернуть горизонтально, положить наш карандаш-балку на опоры и начать на него давить картина будет приблизительно та же. Причем стоит отметить что если концы карандаша защемить то он будет выдерживать большую нагрузку ибо в работу включатся верхние части защемленных концов работая на растяжение.

Собственно на пальцах это и есть весь принцип сопромата. Приложили нагрузку — возникла деформация в результате возникло напряжение которое стало сопротивляться нагрузке, пока все в пределах нормы все это упруго, связи между атомами материала не нарушаются, если нагрузка слишком большая деформация становится слишком большой, расстояния между атомами вещества увеличиваются так сильно, что атомные связи разрушаются и все ломается, течет и падает. Задача инженера вовлечь в работу наибольшую часть конструкции обеспечив максимальную реакцию при небольшой деформации.

Теперь к нашему частному домику. Все эти описания наверху я делал для того, чтобы объяснить общие принципы работы армированной конструкции. Поняв эти принципы вы сможете на глаз определить правильно ли выполнено армирование, добавим некоторые способы соединений и собственно все, что вам надо знать.

Кстати на первой картинке:

Сразу бросается в глаза ошибка — мы видим стену и над ней дополнительные стержни, которые как мы уже знаем усиливают прочность на разрыв. Но здесь зона сжатия, зачем здесь усиливать прочность на разрыв? Так не видя проекта можно замечать ошибки.

Теперь к производству работ: Сначала осмотрим арматуру — она должна быть в пачке с биркой, указывающей на марку, вес, номер партии и пр.

Вес арматуры должен быть с запасом 10-12% с учетом отходов и реза.

Арматура должна быть ровной, не иметь изломов, замятий. Поверхность не должна иметь хлопьев ржавчины. Небольшие участки как на фото никак не влияют на качество изделий.

Количество арматуры обычно варьируется в пределах 80-100 кг/м3 конструкции, Если арматуры в проекте больше — то это говорить о нерациональности армирования, перезаложенности избыточности. Если конечно вы не строите противоатомный бункер или домик на скале около вулкана.

Арматурный каркас состоит из продольных и поперечных стержней и отдельных изделий. Естественно исходя из вышеизложенной теории необходимо контролировать, чтобы арматурные стержни работали наиболее эффективно, то есть нижняя сетка или нижние рабочие стержни должны быть максимально близко к низу конструкции, верхние — максимально близко к верху. При этом мы должны понимать — что эффективность работы зависит также от того как арматура обжата бетоном, арматурные стержень, который торчит на поверхности — фактически на работает в конструкции. Следовательно второй этап контроля — защитные слои. Защитный слой обеспечивается установкой пластиковых фиксаторов.

Здесь на картинке нижние фиксаторы для перекрытий, грунтовые фиксаторы с широким основанием, предназначенные для установки на щебеночное или песчаное основание, звездообразные фиксаторы для обеспечения защитного слоя до боковых поверхностей опалубки.

На фиксаторах экономить не рекомендую, подкладывать камешки, кирпичики приточки или иной мусор настоятельно не рекомендую Цена изделий пара рублей на перекрытие в 100 м2 потратите несколько сотен рублей — не вопрос экономии.

Для обеспечения расстояния между сетками наиболее эффективно применение так называемых «лягушек»

Во такое несложное изделие из арматуры диаметром 10 мм. Арматура должна быть рифленая, так называемого периодического профиля так как она более жесткая и не будет гнуться.

Для гибки арматури применяется станок заводского

Или не заводского самодельного исполнения

Функциональны оба, второй естественно требует большей сноровки, если ваша бригада монолитчиков не имеет такой сноровки — вы лучше их сразу гоните, не арматурщики они совсем.

Резать арматуру для частного строительства вполне можно отрезной машинкой типа «Болгарка», На больших стройках применяют специальные рубочные станки с гидравлическим или механическим приводом. Стоит такой станок не мало, экономически себя на одном частном доме не оправдает.

Нарезанную и подготовленную арматуру мы подаем к месту работ. Технологически процесс устройства армосеток должен происходит так:

1. Раскладываем поперечные стержни — от стены к стене по наиболее короткому расстоянию. Фиксируем их укладкой продольных стержней в с шагом порядка 3 м. при этом вяжем все точки пересечения.

2. Раскладываем продольные стержни, с проектным шагом фиксируя к поперечным стержням через 2 узла пересечения. Вязать каждый узел смысла нет, прочности конструкции это не добавит так как вязальная проволока никак не участвует в работе армокаркаса и выполняет функцию фиксации арматуры в проектном положении. Сваривать арматуру не нужно, во первых долго, во-вторых в любом случае ослабляет стержни, кроме того высокая температура повреждает опалубку.

3. Вязка арматуры осуществляется крючком

Вот он, выверенный многими строителями инструмент заводского изготовления, дешовый и простой. Как ни странно именно такими строят те монолитчики, которые льют по 1500 м3 в месяц под один кран. Да кто-то его подтачивает чтобы было легче подсовывать и приподнимать с перекрытия арматуру, но форма, изогнутость практически оптимальны.

Если у бригады нет крючков — это Вас должно насторожить. Вязка чудоприспособами на шуруповерт поверьте — это еще один вид извращения кроме балета на льду и хоккея на траве. Есть еще автоматические вязальные пистолеты, но они дают выгоду только на больших и очень больших объемах.

4. Соединения стержней — выполняются с перехлестом длиной 30-40 диаметром арматуры, при этом на само соединение должно приходится не менее 3-х вязок.

5. После устройства нижней сетки выполняется установка «лягушек» Шаг подбирается исходя из толщины арматуры сетки, взрослый человек массой 80-90 кг должен ходить по верхней сетке свободно не вызывая значительных прогибаний. Обычный шаг 800х800 при использовании 12-й арматуры с ячейкой 200 мм. Лягушки ставятся в линию.

6. По лягушкам прокладывается направляющий стержень. желательно и красиво если его располагают точно над нижним стержнем арматуры.

Дальше я расскажу как правильнее, а потом как немного удобнее, но менее правильно.

7. Между проложенными направляющими, прокладывают но не привязывают стержни, арматуры ровно столько, сколько соответствующих по направлению стержней нижней сетки.

8. Затем устанавливают на нижнюю сетку все необходимые дополнительные изделия, выпуска, П-образные усиления и пр. При необходимостью производят закладку каналов под коммуникации, гильз и пр. Укладывают арматуру усиления проемов в перекрытии.

9. По направляющим прокладывают стержни верхней сетки фиксируя в каждой точке пересечения с направляющей. Очень красиво когда точно над нижними стержнями.

10. Приподнимают крючком те стержни которые мы бросили не привязывая и подвязывают их к верхним стержням через 2 пересечки.

Читать еще:  Решаем проблему: как правильно утеплить баню изнутри

11. Приподнимая собранный каркас монтажкой устанавливают фиксаторы нижнего слоя.

12. Выдувают или вычищают мусор, производят контроль защитных слоев, шага, расстояния между сетками при помощи рулетки и принимают бетон.

Трудности обычно возникают с моментом поднимания брошенных на нижнюю сетку стержней. Операция не удобная, без навыка не справиться.

Иногда делают так.

Раскладывают направляющие стержни, по ним продольные и по ним уже поперечные. Имеется при этом небольшой перерасход за счет дополнительных направляющих стержней, на маленьком доме он конечно не принципиальный, но все-же он есть.

Еще одна тонкость. Поскольку как мы говорили в теоретической части важной составляющей обеспечивающей прочность и надежность конструкции является расстояние между рабочими стержнями то правильным будет укладка сеток зеркально. Если не указано в проекте то начинаем мы укладку нижнего ряда арматуры по короткой стороне, заканчивать самый последний ряд нужно в том же направлении. Это обеспечит максимальное расстояние между наиболее эффективно работающими в конструкции элементами и несколько уменьшит прогиб. Впрочем это конечно актуально если перекрытие вам посчитали, а не сделали как сосед делал:).

В общем это все про армирование, что я хотел сказать. Естественно информации намного больше, но основное я надеюсь объяснил на пальцах.

Конструктивная арматура в монолитных стенах

Страница 1 из 212>

По СНиПу минимальный диаметр продольной конструктивной арматуры в стенах 12, по пособию к новому СП для внецентренно-сжатых ДОЛЖЕН быть не менее 12, но для монолитных стен РЕКОМЕНДУЕТСЯ не менее 8.

Вот это как понимать, и какую арматуру ставить при условии, что проходит стена по бетону

vishney
Посмотреть профиль
Найти ещё сообщения от vishney
Неголаш
troja
Посмотреть профиль
Найти ещё сообщения от troja

Разве СП не действующий?

to Troja: . вообще это написано в разделе «конструктивные требования». Это раз.
Большинство стен проходят по бетону(или проектируются так,чтобы проходили). Это два. Если я не прав-пожалуйста поправьте меня

vishney
Посмотреть профиль
Найти ещё сообщения от vishney
MasterZim
Посмотреть профиль
Найти ещё сообщения от MasterZim
Петрович Виктор
Посмотреть профиль
Найти ещё сообщения от Петрович Виктор
vishney
Посмотреть профиль
Найти ещё сообщения от vishney
troja
Посмотреть профиль
Найти ещё сообщения от troja
MasterZim
Посмотреть профиль
Найти ещё сообщения от MasterZim
troja
Посмотреть профиль
Найти ещё сообщения от troja
MasterZim
Посмотреть профиль
Найти ещё сообщения от MasterZim
Regby
Посмотреть профиль
Найти ещё сообщения от Regby

Армирование элементов монолитных железобетонных зданий_Тихонов_2007_DJVU

Пособие «Армирование элементов монолитных железобетонных зданий» Тихонов И.Н. 2007год в DJVU

Таблицу 9 смотрел?

Рин, Тихонов это ведь не норматив, вообще к этой книжке не очень приятное отношение. Хоть и исспользую частенько

Возможно речь выше шла о СНиП 2.03.01-84. там указано куда больше, вот только он отменен.

Regby
Посмотреть профиль
Найти ещё сообщения от Regby

В этой таблице 9 идет сравнение конструктивных требований по СНиП и по СП. в пункте 3 . в железобетонных стенах диаметр продольных стержней рекомендуется назначать не менее 12мм-по СНиП; и 8мм-по СП

ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ (к СП 52-101-2003)

5.17. Диаметр продольных стержней внецентренно сжатых линейных элементов монолитных конструкций должен быть не менее 12 мм. В колоннах с размером меньшей стороны сечения 250 мм и более диаметр продольных стержней рекомендуется назначать не менее 16 мм.

В железобетонных стенах диаметр продольных стержней рекомендуется назначать не менее 8 мм.

Арматурные работы: советы профессионала, приёмы и секреты

В этой статье мы расскажем о разных видах армирования конструкций и откроем некоторые секреты профессии арматурщика. Также будут приведены упрощённые расчёты, описания документации, схемы армирования. В статье вы найдёте практические советы и рекомендации по ведению арматурных работ.

  • Виды армирования
  • Армирование конструкций
  • Армирование СНиП
  • Сортамент арматуры
  • Класс арматуры
  • Расчёт армирования
  • Схема армирования
  • Станок для арматуры
  • Сварка арматуры
  • Вязка арматуры

Виды армирования

Армирование — неотъемлемая часть конструкции, материал которой предусматривает переход из жидкого состояния в твёрдое. Этот процесс называют схватыванием или твердением. По способам армирования различают:

  1. Дисперсное — добавление в жидкий раствор фибровых волокон или металлической стружки. Придаёт монолитному участку жёсткость и стойкость к истиранию. Применяют в устройстве полов, стяжек. Может применяться в комбинации со стержневым способом.
  2. Стержневое — в объём бетона или раствора включают систему стержней (сетку, каркас), которая распределяет нагрузку внутри конструкции. Применяют для несущих и отдельно стоящих элементов зданий.
  3. Слоевое (укрепление слоя) — в слой жидкого раствора или шпатлёвки включают сетку для придания стабильности отделочного слоя. Применяют при отделке и ремонте плоскостей.

В данной статье мы рассмотрим армирование конструкций при помощи каркаса и сеток.

Армирование конструкций

Отвердевший бетон выдерживает высокие нагрузки на сжатие — до 1000 кг/см 2 , но неустойчив на излом, разрыв и растяжение. При этом его производство — относительно недорогое.

Арматурный стержень воспринимает значительные нагрузки на растяжение, но неустойчив к сжатию и изгибу. К тому же стоимость производства высока, учитывая, что в неё входят расходы на добычу металла.

Поскольку любая несущая конструкция подвергается комбинированным нагрузкам, необходим материал, удовлетворяющий нескольким требованиям. Комбинация арматурных стержней и бетона даёт комбинацию их свойств. В результате получается железобетон, устойчивый к сжатию, изгибу и излому.

Поскольку все ж/б изделия условно подразделяются на заводские и местного производства, арматура работает в них по-разному. Большинство заводских изделий производится с использованием предварительно напряжённой арматуры. Перед укладкой бетона в форму стержни предварительно растягивают (напрягают) специальным устройством. После отвердения напряжение в стержнях остаётся — арматура как бы «поджимает» весь элемент вдоль них, что значительно улучшает механические свойства детали. Например, балка или плита с предварительно напряжённой арматурой выдерживает большие нагрузки (+ 40–60%) на изгиб, чем обычные.

В высотных зданиях арматурный каркас служит основой всей конструкции. Стержни переходят из одного элемента в другой, что делает их взаимосвязанными между собой и придаёт требуемую жёсткость каркасу здания. Этот эффект даёт возможность возводить небоскрёбы на относительно малой площади.

Армирование СНиП

При строительстве ответственных зданий и сооружений расчёт сечения и количества стержней — один из основных. Нормы армирования регламентируются документами — СНиП 2.03.01–84 «Бетонные и железобетонные конструкции» и приложением к нему «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию». В этих документах подробно описаны расчёты, допуски и требования к конструкциям, в которых применено армирование.

Условия эксплуатации и требования к самим стержням нормируются документом ГОСТ 10884–94 «Сталь для железобетонных конструкций».

Глубокие расчёты необходимы при строительстве крупных и сложных объектов — высотных зданий, мостов, башен, плотин. Для расчёта армирования конструкций в частном строительстве достаточно придерживаться основных правил, которые актуальны для всех случаев применения арматуры.

Сортамент арматуры

Ещё одним полезным документом является сортамент. В нём приведены все возможные характеристики арматурных изделий — вес погонного метра и зависимость его от диаметра, площадь сечения стержня и марки стали и многие другие. Эти данные необходимы при более сложных расчётах — монолитных перекрытий, резервуаров или зданий, имеющих более 3-х этажей.

Класс арматуры

Как правило, в частном порядке используют самые распространённые марки и диаметры стержней. Условно этот набор можно назвать «оптимальным разрядом». В него входят стержни диаметром от 6 до 18 мм. Классы арматуры оптимального разряда по ГОСТ 5781:

  1. А1 (А240). Гладкий прут Ø 6–12 мм — в бухтах (бобинах, мотках), 12–40 мм — в прутах (круг).
  2. А2 (А300). Имеет винтовые рёбра. Диаметр 10–12 мм — в бухтах, 12–40 мм — в прутах.
  3. А3 (А400). Поперечные рёбра расходятся «ёлочкой» от продольного ребра. Ø 6–12 мм — в бухтах, 12–40 мм — прутах.

Другие марки встречаются редко — в основном на объектах с высокими требованиями, эти изделия изготавливают на заказ из более качественной стали.

Армирование бетона бывает только двух видов по конструкции — плоская сетка (может быть изогнута) или пространственный каркас. Сетку применяют для лежачих плит и стяжек, пространственный каркас — для объёмных элементов — балок, перемычек, армопояса, колонн, стен и др. При этом две сетки, устроенные на стабильном расстоянии друг от друга, уже представляют собой каркас (например, стеновой).

Расчёт армирования

Когда определена форма изделия (элемента) и его размер, дело остаётся за малым — определить диаметр и шаг ячейки каркаса. В строительстве с невысокими требованиями оптимально применить эффективную систему адаптированного расчёта. Принцип применения арматуры разного диаметра прост — чем больше нагрузки несёт элемент, тем толще необходимы стержни.

Показатели каркасов и сеток для разных конструкций:

Наименование элементаМарка арматурыДиаметр стержня, ммШаг ячейки, ммПримечание
Подбетонка, отмосткаА1, А2, А38150–250Ненагруженные участки
Лежачая плита, лежачая балка (армопояс)А2, А312–16150–200Не глубже 50 мм от верха плиты
Балка фундамента, висячая балка, висячая плитаА316–18100–160В зависимости от наличия усилений и мест привязки, нагрузки
Колонна, упорная стенкаА314–18100–160Зависит от приложенной нагрузки
БортикА2, А312–16120–160Без существенной нагрузки
Стена зданияА316100–160В зависимости от привязки

В адаптированном расчёте можно применить общий принцип — достаточный шаг ячейки будет равен диаметру стержня, умноженному на 10. В ответственных местах — примыкания и соединения элементов — следует добавлять усиления, т. е. устанавливать дополнительные стержни.

Схема армирования

Как правило, из железобетона устраивают два вида элементов — балки и плиты. В 80% случаев для выполнения каркаса любой сложности достаточно будет двух позиций:

  • рабочие стержни — пруты арматуры Ø 12–18 мм, устроенные вдоль конструкции;
  • распределительные (конструктивные) элементы — изделия из проволоки Ø 6–8 мм, которые распределяют в пространстве и фиксируют рабочие стержни с заданным шагом.

Разумеется, понадобится вязальная проволока.

Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомут

Если балка предполагается висячая, все стержни в ней должны быть одинакового сечения (не менее 16 мм). Для лежачей балки вспомогательные стержни могут быть меньшего диаметра.

Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматура

Каркас висячей плиты представляет собой две зеркально расположенные сетки. Равное расстояние между ними удерживается с помощью ограничителей.

Станок для арматуры

Для того чтобы изготовить элементы типа «хомут» или «лягушка» потребуется специальное приспособление — гибочный станок. Если предполагается ощутимый объём бетонирования, начать следует именно с изготовления этого станка из подручного материала. Он представляет собой верстак на стальной раме, надёжно установленный в горизонтальном положении.

Чтобы собрать станок для арматуры на месте, вам понадобится подручный материал — обрезки металла, среди которых должны быть два уголка 40х40 или 45х45.

  1. Основной элемент станка — упор со втулкой. В середине верстака привариваем вертикально стержень длиной 8–10 мм и подбираем стальную трубку, которая свободно на него наденется.
  2. К трубке привариваем рычаг — лучше всего уголок горизонтальной полкой к трубке. Если уголка нет, тогда упор в 100 мм от приваренного стержня.
  3. К наружному краю рычага привариваем удобную ручку.
  4. Укладываем арматуру наибольшего диаметра (но не более 18 мм), которую необходимо гнуть параллельно длинному краю верстака.
  5. Привариваем к верстаку упор — лучше всего уголок.

Станок может иметь произвольную конструкцию. Основная идея — сила прикладывается в трёх точках через рычаги.

В продаже часто можно встретить заводские ручные приспособления для загиба арматуры, но они редко выдерживают интенсивные нагрузки и предназначены для домашнего использования. Для больших объёмов можно приобрести электрический гибочный станок 220 или 380 В. При помощи электрического станка можно выгибать довольно сложные элементы, которые используют в том числе и в художественной ковке. Цена нового электрического гибочного станка до 40 мм начинается от 70 000 руб.

Сварка арматуры

Самая распространённая ошибка при выполнении арматурных работ — применение электросварки для соединения элементов каркаса. Причины, по которым этого делать нельзя:

  1. Перегрев металла. При производстве арматуры классов А1, А2, А3 используется сталь с относительно высоким содержанием углерода. Это значит, что после нагрева она теряет до 50% свойств по прочности. Это особенно важно для соединений под углом.
  2. Неправильное распределение нагрузки. Жёстко зафиксированный (приваренный) участок стержня как бы вычленяется из него и работает отдельно от остальной его части. По этой причине возникают ненормальные напряжения, сосредоточенные в местах жёсткой фиксации (сварки) вместо того, чтобы распределяться по всей длине.
  3. Неправильно собранный каркас останется только выбросить (невозможно переделать).
  4. Опасность для других рабочих — возможно случайное поражение током.
  5. Затраты на электричество.

Однако есть случаи, когда сварка не только незаменима, но и обязательно требуется:

  1. Установка закладных деталей (ЗД). ЗД — приоритетные элементы, на которых сосредотачивается большая нагрузка. Они ввариваются в каркас для лучшей передачи нагрузки на стержни.
  2. Сварка продольных стыков (перехлёстов). Перегретая арматура сохраняет до 70% свойств на растяжение. К тому же на перехлёсте она сдвоена. Сварка продольных стержней «в стык» лишена смысла.
  3. Крепление по месту к уже существующим ЗД или стальным элементам (при реконструкции зданий).

Вязка арматуры

Скрепление пересекающихся стержней между собой — кропотливая и трудоёмкая работа. Но её нельзя избежать при армировании конструкций. Для этого используют мягкую вязальную проволоку толщиной от 0,5 до 2,5 мм. Приспособление для работы — крючок арматурщика — каждый специалист подбирает себе сам. Есть небольшой ассортимент заводских моделей, но в подавляющем большинстве случаев крючок изготавливают на месте из прута проволоки Ø 8–12 мм. Для этого необходимо выгнуть его в удобной форме и заточить с одного конца. На обратном конце стержня крючка можно надеть пластиковую трубку. Также крюк можно установить в аккумуляторный шуруповёрт, что значительно облегчит работу.

Для облегчения труда арматурщика есть развитые формы вязального крючка:

  1. Заводской арматурный крючок. Между ручкой и стержнем крюка установлен подшипник.
  2. Автоматический крюк. Вращается за счёт пружины в рукояти, соединённой с жалом.
  3. Вязальное устройство (пистолет). Операция автоматизирована, пистолет сам поджимает стержни и вяжет проволоку.

При создании каркасов для разных элементов применяют разный шаг вязки. Чем более ответственный участок — тем плотнее будут расположены узлы.

Шаг узлов в разных каркасах:

Наименование элементаШаг ячейки, ммШаг узла, ячеек вдоль х ячеек поперёк
Подбетонка, отмостка150–2503 х 3
Лежачая плита, лежачая балка (армопояс)150–2002 х 3
Балка фундамента, висячая балка100–160каждое пересечение
Висячая плита (перекрытие, балкон)100–1602 х 2
Колонна, упорная стенка100–1602 х 2
Бортик120–1603 х 3
Стена здания100–1602 х 2

Арматурные работы часто сопряжены с установкой опалубки, которую часто смазывают маслом для облегчения демонтажа. Внимательно следите за тем, чтобы масло не попадало на стержни — это приведёт к отсутствию сцепления между бетоном и арматурой. Использование сильно окисленной арматуры категорически нежелательно.

Чем определяется максимальный и минимальный процент армирования.

Выводы

Всё вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3) для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.

Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.

С помощью новых функций, реализованных в 21­й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но гораздо более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.

Армирование бетона

Заливка монолитной плиты с усилительным каркасом: фото

Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).

В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.

Минимальный процент усиления

Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.

Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Готовый каркас и металлического прута

Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.

Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.

  • Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
  • Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
  • Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).

Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.

Максимальный процент усиления

Сборка каркаса перед заливкой

В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.

Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.

Как и в предыдущем случае, здесь также имеются нормативы.

  • Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;

Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.

Защитный слой бетона

Схема Ж/б в разрезе

Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Толщина слоя над металлическим каркасом составляющими должна составлять.

В стенках и плитах (толщиной мм) не менее:

  • Свыше 100 мм – 15 мм;
  • До 100 мм и включительно – 10 мм;

В ребрах и балках:

  • Свыше 250 мм – 20 мм;
  • До 250 и включительно – 15 мм;

В фундаментных балках:

  • Не менее 30 мм;
  • Не менее 20 мм;

Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.

Укрепление лестничного пролета

  • Монолитных с цементной подушкой – 35 мм;
  • Сборных – 30 мм
  • Монолитных без цементной подушки – 70 мм;

Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.

Литература:

  1. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52­01­2003).
  2. СП 52­101­2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
  3. Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 52­101­2003).
  4. ГЭСН 81­02­06­2001.
  5. ФЕР 06­01­001­17.
  • ООО «СКАД Софт»
  • scad++
  • арматура
  • бетон
  • точность

Сварка арматуры

Самая распространённая ошибка при выполнении арматурных работ — применение электросварки для соединения элементов каркаса. Причины, по которым этого делать нельзя:

  1. Перегрев металла. При производстве арматуры классов А1, А2, А3 используется сталь с относительно высоким содержанием углерода. Это значит, что после нагрева она теряет до 50% свойств по прочности. Это особенно важно для соединений под углом.
  2. Неправильное распределение нагрузки. Жёстко зафиксированный (приваренный) участок стержня как бы вычленяется из него и работает отдельно от остальной его части. По этой причине возникают ненормальные напряжения, сосредоточенные в местах жёсткой фиксации (сварки) вместо того, чтобы распределяться по всей длине.
  3. Неправильно собранный каркас останется только выбросить (невозможно переделать).
  4. Опасность для других рабочих — возможно случайное поражение током.
  5. Затраты на электричество.
Читать еще:  Как повесить картину

Однако есть случаи, когда сварка не только незаменима, но и обязательно требуется:

  1. Установка закладных деталей (ЗД). ЗД — приоритетные элементы, на которых сосредотачивается большая нагрузка. Они ввариваются в каркас для лучшей передачи нагрузки на стержни.
  2. Сварка продольных стыков (перехлёстов). Перегретая арматура сохраняет до 70% свойств на растяжение. К тому же на перехлёсте она сдвоена. Сварка продольных стержней «в стык» лишена смысла.
  3. Крепление по месту к уже существующим ЗД или стальным элементам (при реконструкции зданий).

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.


Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Требование к армированию крайних конструктивных элементов

Категория сейсмостой кости1234Проектирование несейсмостойких- конструкцийПримечание
Минимальный коэффициент армирования вертикальной арматурой0,010Ас

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Непосредственные расчеты

Схема анкеровки плиты перекрытия.

Если нижний каркас должен доходить до последних перекладин, то его заводят за опору на длину базовой анкеровки, расчет которой производят по формуле:

lo, an = Rsp Asp/(Rbond us), где Rsp – рассчитываемое сопротивление долевого сечения арматуры растяжению; Asp – номинальная площадь арматуры (установленной); Rbond – сопротивление сцепления каркаса и бетона; Us – периметр по профилю арматуры (по номинальному диаметру).

После того как производят расчет анкеровки, необходимо разобраться, какие хомуты и стержни употребить и как их разместить.

Например, некоторые стержни, которые необходимо довести до опоры, обрывают в пролете, а стержни вязаной арматуры иногда отгибаются, причем тогда, когда их количество больше двух и если они двухсрезные. А когда это четырехсрезные хомуты, их число не должно превышать четырех и их тоже можно отгибать на опоры и на плиты.

Монолитные плиты перекрытия частично или полностью опираются по контуру (периметру), а иногда свободно опираются или имеют защемления на опорах. В конструкциях чаще всего используют консольные перекрытия, которые опираются на одну кромку, или такие плиты, которые опираются на углы (безбалочное перекрытие). Какие из них употребить, зависит от расчета, который производится довольно легко. Для него понадобится:

  • Лист;
  • Карандаш;
  • Линейка;
  • Калькулятор;
  • Знание необходимых формул.

Плиты, как и балки, могут быть однопролетные – разрезные (шарнирные и с нешарнирным опиранием), неразрезные – консольные (многопролетные).

Схема армирования ленточного фундамента по СНиП

Тяжесть любого здания передается на грунт через фундамент. Фундамент не позволяет строению деформироваться или смещаться под отрицательным воздействием почвы и климатических условий. Эта важная конструкция может быть линейной, столбчатой, плитной (плавающей), свайной. Первые три вида требуют использования бетонной смеси и ее армирования.

  • Для чего нужно армировать фундамент
  • Требования СНиП к монтажу арматуры
  • Как правильно армировать ленточный фундамент
  • Как армировать фундамент столбчатой конструкции
  • Армирование плитной конструкции фундамента

Для чего нужно армировать фундамент

Фундамент чаще всего деформируется из-за неравномерной нагрузки или пучения грунта под воздействием низких температур. Если конструкция состоит из бетона, то следует учитывать его характеристики: высокие показатели прочности на сжатие и низкую прочность на разрыв. Для компенсации последнего качества используется схема каркаса, которая монтируется из металлических прутьев для армирования. Сталь обладает более высокой устойчивостью к растяжению, что помогает фундаменту выдерживать повышенные нагрузки.

Верхняя часть конструкции фундамента под весом здания сжимается, нижняя растягивается при замерзании грунта, вследствие чего в области растяжения могут появиться трещины. Поэтому арматура укладывается в нижней и верхней части фундамента. В армированном бетоне цементный раствор сопротивляется сжатию, металл — процессу растяжения. Укладывать прутья посередине нет смысла, так как там повышенной нагрузки не наблюдается.

При возведении фундамента особое внимание необходимо уделить тем частям конструкции, которые выделяются на пристройки и эркеры. Для армирования бетона в этих областях используются согнутые под определенным углом прутья на примыкающие стены. Металл не должен выступать за опалубку или уходить в грунт, расстояние между прутьями не должно превышать 5 см. Для соединения можно использовать только проволоку (но не сварку). Форма каркаса из арматурных прутьев должна быть квадратной (прямоугольной).

Требования СНиП к монтажу арматуры

Общие схемы и требования к возведению конструкций с использованием бетона (железобетона) определены в СНиП 52−01−2003. Данный документ содержит правила расчета склонности железобетона к деформациям, его способности к образованию трещин, показателей прочности, требования к размерам и формам конструкции:

  • при возведении фундаментов можно использовать только арматуру, соответствующую стандартам, с сертификатом качества, определенную в проектной документации;
  • прутья сцепляются так, чтобы полностью исключить возможность их смещения во время заливки бетона;
  • если для армирования ленточного фундамента используются сварные каркасы или сетки, то при их изготовлении разрешается применять такой способ сварки, который не допускает деформирования;
  • радиус изгиба арматурных прутьев должен соответствовать затребованному в проекте;
  • механические стыки арматуры по прочности не должны уступать прочности основного материала;
  • расстояние между вертикальными стержнями зависит от их диаметра, вида заполнителя бетонной смеси, расположения в каркасе, метода заливки бетона, но не допускается шаг меньше, чем 25 см;
  • расстояние между продольными прутьями не должно превышать 40 см;
  • расстояние между прутьями, установленными поперечно, не должно превышать 30 см.

Для вертикального армирования используются прутья с диаметром 10−12 мм с ребристой поверхностью. Для продольного расположения диаметр арматуры не должен быть меньше, чем 10 мм и больше, чем 32 мм. Для поперечного размещения используется арматура с диаметром от 6 до 8 мм.

Как правильно армировать ленточный фундамент

Перед тем как заливать ленточный конструкцию, необходимо ее армировать при помощи металлической арматуры. Ленточный фундамент — полоса из железобетона по всему периметру дома, заложенная под наружными и внутренними стенами. Толщина конструкции зависит от материала стен и их толщины.

Мелкозаглубленные фундаменты (глубина от 50 до 70 см) возводятся на пучинистых почвах для строений из бревна или бруса, а также каменных домов с площадью не более чем 6×6 м. Заглубленные фундаменты возводятся при строительстве больших и тяжелых домов с цоколями, подвалами и гаражами. Глубина заглубленной конструкции — на 20−30 см ниже, чем уровень замерзания грунта.

Количество арматурных сеток зависит от вида фундамента. Для конструкции глубиной 50 см и шириной 40 см шаг между продольными прутьями может быть 10−15 см. Если высота конструкции около метра, то между горизонтальными прутьями с ребрами и диаметром 10−16 мм должно быть 30−40 см. Вертикальная арматура (гладкие прутья с диаметром 6−8 мм) устанавливается, если высота фундамента больше, чем 15 см. В любом случае арматура для ленточного фундамента должна иметь структуру жесткой рамы прямоугольного или квадратного сечения.

Особая разновидность ленточного фундамента — конструкция с пенополистирольной несъемной опалубкой в виде листов или пустотелых блоков, которые также подвергаются армированию. Подобная опалубка собирается просто, а после заливки бетонной смеси она не требует разборки.

Диаметр прутков должен быть примерно 0,1% от площади поперечного сечения основы будущего здания. Армирование в пенополистирольной опалубке производится горизонтально и вертикально. Шаг между горизонтальными элементами согласно СНиП — 50 см. Если монтируется этот вид ленточного фундамента, то специалисты советуют дополнить его гидроизоляцией. Недавно рынок стал предлагать пенополистирольную опалубку с арматурой, что позволяет избежать необходимости в ее вязке.

Как армировать фундамент столбчатой конструкции

Столбчатый фундамент — это вкопанные в грунт столбы различной формы, расположенные в местах, где пересекаются стены, а также в пролетах. Их нижнюю часть называют основанием, верхнюю — оголовком. Оголовок должен быть идеально ровным, располагаться от 40 до 50 см над грунтом (на него возводятся стены). Этот вид фундамента можно использовать практически в любом грунте (кроме пучинистого), он менее затратный, чем ленточный, легко монтируется собственными силами.

Столбы для фундамента можно брать круглые, квадратные или прямоугольные. Опалубка строится:

  • из досок толщиной не менее 4 см,
  • ДСП,
  • фанеры,
  • железа.

При круглом сечении вместо опалубки можно использовать трубы длиной 2−2,5 м, с диаметром 10−20 см. Скважины круглой формы высверливаются ручным буром. Для армирования достаточно двух вертикальных прутьев с ребрами, перевязанных в трех или четырех местах монтажной проволокой.

Столбы квадратной формы можно сделать не только с одинаковым, но и с различным сечением на концах (в виде ровного параллелепипеда или с расширенным основанием). Расширение увеличивает показатели несущей способности и сопротивляемости деформациям при промерзании грунта. Для установки столбов квадратной или прямоугольной формы роются ямы и монтируется опалубка, задающая форму столба. Перед заливкой бетонной смеси на дно устанавливается гидроизоляция и монтируется арматура из вертикальных прутьев, перевязанных проволокой.

Угол стыковки арматуры необязательно должен быть 90 градусов. Главное, чтобы не нарушалась общая картина армирования фундамента, схема, которая соответствует проекту. Армирование углов ленточного фундамента производится аналогично армированию основной конструкции.

Для заливки можно использовать стандартную бетонную смесь (марка В25) или добавить в нее бутовый камень или плитняк средних размеров. Смесь заливается постепенно, примерно по 20 см, чтобы предотвратить скопление воздуха. После затвердения бетона опалубка демонтируется, столбы засыпаются грунтом.

Армирование плитной конструкции фундамента

Плитная (плавающая) конструкция фундамента — это цельная плита из железобетона, толщина которой 10 см или более, уложенная на подушку из песка и гравия и расположенная по всей площади здания. Этот вид конструкции фундамента бывает двух видов:

  • мелкозаглубленный;
  • заглубленный.

Для мелкозаглубленной конструкции достаточно снять верхний слой грунта и заменить его подушкой из песка и гравия. При установке заглубленного фундамента требуется рытье достаточно глубокого котлована, поэтому подобные конструкции сооружаются при возведении домов с цоколями или подвалами.

На подушку из гравия и песка укладывается гидроизоляционный материал и монтируется опалубка. Потом создается арматурный короб, состоящий из нижней и верхней сетки, которые связаны между собой. Используются прутья с ребрами и диаметром от 12 до 16 мм, расположенные на расстоянии 20 см друг от друга. Арматурные прутья можно заменить вязаной сеткой или каркасом, соединенным резьбовыми соединениями. Сетки можно укладывать в двух, трех или четырех плоскостях. Независимо от вида арматуры, необходимо монтировать ее так, чтобы верхняя часть плиты после заливки бетона была гладкой.

Построить фундамент из бетона можно и своими руками, если все правильно рассчитать и выбрать соответствующую марку бетона и арматуру. Для ленточной, столбчатой и мелкозаглубленной плитной конструкции даже земельные работы можно выполнить вручную. Трудности могут возникнуть только с заглубленным плитным фундаментом, требующим рытья глубокого котлована и большого объема бетона.

Приемка бетонных и железобетонных конструкций или частей сооружений

  • фактических геометрических параметров конструкций рабочим чертежам и отклонениям по таблице 5.12;
  • качества поверхности внешнему виду монолитных конструкций (приложение X);
  • свойств бетона проектным требованиям по 5.5 и арматуры — по 5.16;
  • применяемых в конструкции материалов, полуфабрикатов и изделий требованиям проектной документации по данным входного контроля технической документации.

18.2 Приемку законченных бетонных и железобетонных конструкций или частей сооружений следует оформлять в установленном порядке актом освидетельствования скрытых работ и актом освидетельствования ответственных конструкций.

18.3 Требования, предъявляемые к законченным бетонным и железобетонным конструкциям или частям сооружений, приведены в таблице 5.12.

Таблица 5.12. СП 70.13330.2012

Несущие и ограждающие конструкции.
Актуализированная редакция СНиП 3.03.01-87

Предельные отклонения, мм

Контроль (метод, объем, вид регистрации)

1 Отклонение линий плоскостей пересечения от вертикали или проектного наклона на всю высоту конструкций для:

Измерительный, каждый конструктивный элемент, журнал работ

стен и колонн, поддерживающих монолитные покрытия и перекрытия

стен и колонн, поддерживающих сборные балочные конструкции

стен зданий и сооружений, возводимых в скользящей опалубке, при отсутствии промежуточных перекрытий

1/500 высоты сооружения, но не более 100

стен зданий и сооружений, возводимых в скользящей опалубке, при наличии промежуточных перекрытий

1/1000 высоты сооружения, но не более 50

2 Отклонение осей колонн каркасных зданий на всю высоту здания (n-количество этажей)

h (200n 1/2 ), но не более 50

Измерительный, всех колонн и линий их пересечения, журнал работ

3 Отклонение от прямолинейности и плоскостности поверхности на длине 1 — 3 м и местные неровности поверхности бетона

По приложению X для монолитных конструкций. По ГОСТ 13015 для сборных конструкций

Измерительный, не менее 5 измерений на каждые 50 м длины и каждые 150 м поверхности конструкций, журнал работ

4 Отклонение горизонтальных плоскостей на весь выверяемый участок

Измерительный, не менее 5 измерений на каждые 50 м длины и каждые 150 м поверхности конструкций, журнал работ

5 Отклонение длин или пролетов элементов, размеров в свету

Измерительный, каждый элемент, журнал работ

6 Размер поперечного сечения элемента h при:

Измерительный, каждый элемент (не менее одного измерения на 100 м площади плит перекрытия и покрытия), журнал работ

При промежуточных значениях h величина допуска принимается интерполяцией

7 Отклонение от соосности вертикальных конструкций

Измерительный (исполнительная геодезическая съемка), каждый конструктивный элемент, журнал работ

8 Отклонение размеров оконных, дверных и других проемов

Измерительный, каждый проем, журнал работ

9 Отметки поверхностей и закладных изделий, служащих опорами для стальных или сборных железобетонных колонн и других сборных элементов

Измерительный, каждый опорный элемент, исполнительная схема

10 Расположение анкерных болтов:

То же, каждый фундаментный болт, исполнительная схема

в плане внутри контура опоры

в плане вне контура опоры

18.4 При приемочном контроле внешнего вида и качества поверхностей конструкций (наличие трещин, сколов бетона, раковин, обнажения арматурных стержней и других дефектов) визуально проверяют каждую конструкцию. Требования к качеству поверхности монолитных конструкций приведены в приложении X. Особые требования к качеству поверхности монолитных конструкций должны быть представлены в проектной документации. Требования к качеству поверхности конструкций допускается устанавливать для монолитных конструкций по ГОСТ 13015.

18.5 При приемке монолитных конструкций на строительной площадке контроль качества бетона должен осуществляться комплексным применением следующих методов испытаний и контроля:

  • показателей качества бетона по прочности в конструкциях по ГОСТ 18105;
  • морозостойкости по ГОСТ 10060;
  • водонепроницаемости по ГОСТ 12730.5.

Примечание. При необходимости осуществляется контроль установленных в проектной документации и ГОСТ 26633 других показателей.

18.6 Определение показателей качества бетона по прочности в конструкциях при приемке в соответствии с ГОСТ 18105 осуществляется неразрушающими методами или по образцам, отобранным из конструкций.

18.7 При контроле прочности бетона конструкций в промежуточном возрасте неразрушающими методами контролируется не менее одной конструкции каждого вида (колонна, стена, перекрытие, ригели и т.д.) из контролируемой партии.

18.8 При контроле прочности бетона конструкций неразрушающими методами в проектном возрасте проводится сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии. При этом, согласно ГОСТ 18105, число участков испытаний должно быть не менее:

  • трех на каждую захватку для плоских конструкций (стена, перекрытие, фундаментная плита);
  • одного на 4 м длины (или три на захватку) для каждой линейной горизонтальной конструкции (балка, ригели);
  • шести на каждую конструкцию — для линейных вертикальных конструкций (колонна, пилон).

18.9 Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20. Число измерений, проводимых на каждом контролируемом участке, принимают по ГОСТ 17624 или ГОСТ 22690.

При инспекционном контроле (проведении обследований и экспертной оценке качества) линейных вертикальных конструкций число контролируемых участков должно быть не менее четырех.

18.10 Определение показателей качества бетона по прочности в конструкциях при приемке по образцам осуществляется в тех случаях, если это предусмотрено проектной документацией.

18.11 Отбор образцов из конструкций для определения показателей качества бетона по прочности должен производиться по ГОСТ 28570.

18.12 Оценка и приемка бетона конструкций по образцам, отобранным из конструкций, проводится по ГОСТ 18105 из условия Вф > В и осуществляется:

  • с определением характеристик однородности бетона по прочности при использовании данных текущего контроля прочности бетона отдельной конструкции или партии (группы) конструкций с числом участков испытаний не менее трех;
  • без определения характеристик однородности бетона по прочности при использовании данных текущего контроля прочности бетона отдельной конструкции или захватки конструкции с числом участков испытаний не менее трех. При этом фактический класс бетона Вф принимается равным 80% средней прочности бетона контролируемых участков конструкции или захватки конструкции, но не более минимального частного значения прочности бетона отдельной конструкции или участка конструкции, входящих в контролируемую партию.

Контролю по образцам, отобранным из конструкций, подлежат также те показатели качества бетона, которые приведены в проектной документации.

18.13 Для бетонов классов В60 и выше оценка и приемка бетона по прочности проводится в соответствии с ГОСТ 18105 с учетом следующих требований:

  • коэффициент требуемой прочности принимается по таблице 2 ГОСТ 18105, но не менее 1,14;
  • в начальный период уровень требуемой прочности бетона в партии принимается в соответствии с 6.8 ГОСТ 18105 либо по схеме «Г»;
  • фактический класс бетона Вф в партии (группе) монолитных конструкций определяется по контрольным образцам, изготовленным на стройплощадке, в исключительных случаях, если невозможно определить прочность бетона в конструкциях неразрушающими методами по формулам;
  • при количестве единичных результатов от каждой партии конструкций не менее шести, но не более 15, без учета характеристик однородности бетона по прочности по формуле

где Rm — средняя фактическая прочность бетона в партии (группе) конструкций по данным испытаний контрольных образцов, МПа;

при количестве единичных результатов от каждой партии конструкций не менее 15, с учетом характеристик однородности бетона по прочности:

где ta — коэффициент, принимаемый по таблице 3 ГОСТ 18105 в зависимости от числа единичных значений прочности бетона, по которым рассчитан коэффициент вариации прочности бетона;

Vm — текущий коэффициент вариации прочности бетона в партии конструкций по данным испытаний контрольных образцов.

18.14 Партия конструкций подлежит приемке по прочности бетона, ГОСТ 18105, если фактический класс бетона Вф в каждой отдельной конструкции этой партии не ниже проектного класса бетона по прочности Внорм.

18.15 Значения фактического класса прочности бетона каждой конструкции должны быть приведены в журнале бетонных работ.

18.16 На поверхности конструкций не допускается обнажение рабочей и конструктивной арматуры, за исключением арматурных выпусков, предусмотренных в рабочих чертежах.

18.17 Открытые поверхности стальных закладных деталей, выпуски арматуры должны быть очищены от наплывов бетона или раствора.

18.18 На лицевых поверхностях монолитных конструкций, предназначенных под окраску, не допускаются жировые и ржавые пятна.

18.19 Качество рельефных и т.п. поверхностей, не подлежащих дальнейшей отделке (окраске, оклейке, облицовке и т.д.), должно соответствовать требованиям проектной документации.

18.20 Предельно допустимую ширину раскрытия трещин следует устанавливать исходя из эстетических соображений, наличия требований к проницаемости конструкций, а также в зависимости от длительности действия нагрузки, вида арматурной стали и ее склонности к развитию коррозии в трещине.

При этом предельно допустимое значение ширины раскрытия трещин аcrc, ult следует принимать не более:

  • из условия сохранности арматуры:
    • 0,3 мм — при продолжительном раскрытии трещин;
    • 0,4 мм — при непродолжительном раскрытии трещин;
  • из условия ограничения проницаемости и конструкции:
    • 0,2 мм — при продолжительном раскрытии трещин;
    • 0,3 мм — при непродолжительном раскрытии трещин.

Для массивных гидротехнических сооружений предельно допустимые значения ширины раскрытия трещин устанавливают по соответствующим нормативным документам в зависимости от условий работы конструкций и других факторов, но не более 0,5 мм.

18.21 При выявлении по результатам строительного контроля (обследования конструкций) отклонений качества готовых конструкций от требований проекта и раздела 18 настоящего СП (геометрические размеры, качество бетона и поверхностей, армирование, расположение закладных деталей) составляется акт освидетельствования бетонных и железобетонных конструкций, который согласовывается с проектной организацией на предмет обеспечения безопасности конструкций [8].

Приемка бетонных и железобетонных конструкций или частей сооружений

  • фактических геометрических параметров конструкций рабочим чертежам и отклонениям по таблице 5.12;
  • качества поверхности внешнему виду монолитных конструкций (приложение X);
  • свойств бетона проектным требованиям по 5.5 и арматуры — по 5.16;
  • применяемых в конструкции материалов, полуфабрикатов и изделий требованиям проектной документации по данным входного контроля технической документации.

18.2 Приемку законченных бетонных и железобетонных конструкций или частей сооружений следует оформлять в установленном порядке актом освидетельствования скрытых работ и актом освидетельствования ответственных конструкций.

18.3 Требования, предъявляемые к законченным бетонным и железобетонным конструкциям или частям сооружений, приведены в таблице 5.12.

Таблица 5.12. СП 70.13330.2012

Несущие и ограждающие конструкции.
Актуализированная редакция СНиП 3.03.01-87

Предельные отклонения, мм

Контроль (метод, объем, вид регистрации)

1 Отклонение линий плоскостей пересечения от вертикали или проектного наклона на всю высоту конструкций для:

Измерительный, каждый конструктивный элемент, журнал работ

стен и колонн, поддерживающих монолитные покрытия и перекрытия

стен и колонн, поддерживающих сборные балочные конструкции

стен зданий и сооружений, возводимых в скользящей опалубке, при отсутствии промежуточных перекрытий

1/500 высоты сооружения, но не более 100

стен зданий и сооружений, возводимых в скользящей опалубке, при наличии промежуточных перекрытий

1/1000 высоты сооружения, но не более 50

2 Отклонение осей колонн каркасных зданий на всю высоту здания (n-количество этажей)

h (200n 1/2 ), но не более 50

Измерительный, всех колонн и линий их пересечения, журнал работ

3 Отклонение от прямолинейности и плоскостности поверхности на длине 1 — 3 м и местные неровности поверхности бетона

По приложению X для монолитных конструкций. По ГОСТ 13015 для сборных конструкций

Измерительный, не менее 5 измерений на каждые 50 м длины и каждые 150 м поверхности конструкций, журнал работ

4 Отклонение горизонтальных плоскостей на весь выверяемый участок

Измерительный, не менее 5 измерений на каждые 50 м длины и каждые 150 м поверхности конструкций, журнал работ

5 Отклонение длин или пролетов элементов, размеров в свету

Измерительный, каждый элемент, журнал работ

6 Размер поперечного сечения элемента h при:

Измерительный, каждый элемент (не менее одного измерения на 100 м площади плит перекрытия и покрытия), журнал работ

При промежуточных значениях h величина допуска принимается интерполяцией

7 Отклонение от соосности вертикальных конструкций

Измерительный (исполнительная геодезическая съемка), каждый конструктивный элемент, журнал работ

8 Отклонение размеров оконных, дверных и других проемов

Измерительный, каждый проем, журнал работ

9 Отметки поверхностей и закладных изделий, служащих опорами для стальных или сборных железобетонных колонн и других сборных элементов

Измерительный, каждый опорный элемент, исполнительная схема

10 Расположение анкерных болтов:

То же, каждый фундаментный болт, исполнительная схема

в плане внутри контура опоры

в плане вне контура опоры

18.4 При приемочном контроле внешнего вида и качества поверхностей конструкций (наличие трещин, сколов бетона, раковин, обнажения арматурных стержней и других дефектов) визуально проверяют каждую конструкцию. Требования к качеству поверхности монолитных конструкций приведены в приложении X. Особые требования к качеству поверхности монолитных конструкций должны быть представлены в проектной документации. Требования к качеству поверхности конструкций допускается устанавливать для монолитных конструкций по ГОСТ 13015.

18.5 При приемке монолитных конструкций на строительной площадке контроль качества бетона должен осуществляться комплексным применением следующих методов испытаний и контроля:

  • показателей качества бетона по прочности в конструкциях по ГОСТ 18105;
  • морозостойкости по ГОСТ 10060;
  • водонепроницаемости по ГОСТ 12730.5.

Примечание. При необходимости осуществляется контроль установленных в проектной документации и ГОСТ 26633 других показателей.

18.6 Определение показателей качества бетона по прочности в конструкциях при приемке в соответствии с ГОСТ 18105 осуществляется неразрушающими методами или по образцам, отобранным из конструкций.

18.7 При контроле прочности бетона конструкций в промежуточном возрасте неразрушающими методами контролируется не менее одной конструкции каждого вида (колонна, стена, перекрытие, ригели и т.д.) из контролируемой партии.

18.8 При контроле прочности бетона конструкций неразрушающими методами в проектном возрасте проводится сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии. При этом, согласно ГОСТ 18105, число участков испытаний должно быть не менее:

  • трех на каждую захватку для плоских конструкций (стена, перекрытие, фундаментная плита);
  • одного на 4 м длины (или три на захватку) для каждой линейной горизонтальной конструкции (балка, ригели);
  • шести на каждую конструкцию — для линейных вертикальных конструкций (колонна, пилон).

18.9 Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20. Число измерений, проводимых на каждом контролируемом участке, принимают по ГОСТ 17624 или ГОСТ 22690.

При инспекционном контроле (проведении обследований и экспертной оценке качества) линейных вертикальных конструкций число контролируемых участков должно быть не менее четырех.

18.10 Определение показателей качества бетона по прочности в конструкциях при приемке по образцам осуществляется в тех случаях, если это предусмотрено проектной документацией.

18.11 Отбор образцов из конструкций для определения показателей качества бетона по прочности должен производиться по ГОСТ 28570.

18.12 Оценка и приемка бетона конструкций по образцам, отобранным из конструкций, проводится по ГОСТ 18105 из условия Вф > В и осуществляется:

  • с определением характеристик однородности бетона по прочности при использовании данных текущего контроля прочности бетона отдельной конструкции или партии (группы) конструкций с числом участков испытаний не менее трех;
  • без определения характеристик однородности бетона по прочности при использовании данных текущего контроля прочности бетона отдельной конструкции или захватки конструкции с числом участков испытаний не менее трех. При этом фактический класс бетона Вф принимается равным 80% средней прочности бетона контролируемых участков конструкции или захватки конструкции, но не более минимального частного значения прочности бетона отдельной конструкции или участка конструкции, входящих в контролируемую партию.

Контролю по образцам, отобранным из конструкций, подлежат также те показатели качества бетона, которые приведены в проектной документации.

18.13 Для бетонов классов В60 и выше оценка и приемка бетона по прочности проводится в соответствии с ГОСТ 18105 с учетом следующих требований:

  • коэффициент требуемой прочности принимается по таблице 2 ГОСТ 18105, но не менее 1,14;
  • в начальный период уровень требуемой прочности бетона в партии принимается в соответствии с 6.8 ГОСТ 18105 либо по схеме «Г»;
  • фактический класс бетона Вф в партии (группе) монолитных конструкций определяется по контрольным образцам, изготовленным на стройплощадке, в исключительных случаях, если невозможно определить прочность бетона в конструкциях неразрушающими методами по формулам;
  • при количестве единичных результатов от каждой партии конструкций не менее шести, но не более 15, без учета характеристик однородности бетона по прочности по формуле

где Rm — средняя фактическая прочность бетона в партии (группе) конструкций по данным испытаний контрольных образцов, МПа;

при количестве единичных результатов от каждой партии конструкций не менее 15, с учетом характеристик однородности бетона по прочности:

где ta — коэффициент, принимаемый по таблице 3 ГОСТ 18105 в зависимости от числа единичных значений прочности бетона, по которым рассчитан коэффициент вариации прочности бетона;

Vm — текущий коэффициент вариации прочности бетона в партии конструкций по данным испытаний контрольных образцов.

18.14 Партия конструкций подлежит приемке по прочности бетона, ГОСТ 18105, если фактический класс бетона Вф в каждой отдельной конструкции этой партии не ниже проектного класса бетона по прочности Внорм.

18.15 Значения фактического класса прочности бетона каждой конструкции должны быть приведены в журнале бетонных работ.

18.16 На поверхности конструкций не допускается обнажение рабочей и конструктивной арматуры, за исключением арматурных выпусков, предусмотренных в рабочих чертежах.

18.17 Открытые поверхности стальных закладных деталей, выпуски арматуры должны быть очищены от наплывов бетона или раствора.

18.18 На лицевых поверхностях монолитных конструкций, предназначенных под окраску, не допускаются жировые и ржавые пятна.

18.19 Качество рельефных и т.п. поверхностей, не подлежащих дальнейшей отделке (окраске, оклейке, облицовке и т.д.), должно соответствовать требованиям проектной документации.

18.20 Предельно допустимую ширину раскрытия трещин следует устанавливать исходя из эстетических соображений, наличия требований к проницаемости конструкций, а также в зависимости от длительности действия нагрузки, вида арматурной стали и ее склонности к развитию коррозии в трещине.

При этом предельно допустимое значение ширины раскрытия трещин аcrc, ult следует принимать не более:

  • из условия сохранности арматуры:
    • 0,3 мм — при продолжительном раскрытии трещин;
    • 0,4 мм — при непродолжительном раскрытии трещин;
  • из условия ограничения проницаемости и конструкции:
    • 0,2 мм — при продолжительном раскрытии трещин;
    • 0,3 мм — при непродолжительном раскрытии трещин.

Для массивных гидротехнических сооружений предельно допустимые значения ширины раскрытия трещин устанавливают по соответствующим нормативным документам в зависимости от условий работы конструкций и других факторов, но не более 0,5 мм.

18.21 При выявлении по результатам строительного контроля (обследования конструкций) отклонений качества готовых конструкций от требований проекта и раздела 18 настоящего СП (геометрические размеры, качество бетона и поверхностей, армирование, расположение закладных деталей) составляется акт освидетельствования бетонных и железобетонных конструкций, который согласовывается с проектной организацией на предмет обеспечения безопасности конструкций [8].

Все об армировании стен

  1. Особенности
  2. Основные способы
  3. Используемые материалы
  4. Технология

Бетон – стройматериал, востребованность которого очень высока. Он используется в создании фундамента, строительстве разного рода несущих и ограждающих конструкций, а также стен. Из него же делают плитку, что впоследствии станет отделкой. Именно прочность раствора при застывании обеспечивает такой большой спрос на бетон. Армирование бетонных стен – процесс обязательный и требующий учета всех деталей технологии. Но армировать приходится и стеновые панели жилых (и не только) зданий, и стены из газоблоков, кирпича и т. д. Следует разобраться, нужны ли для армирования чертежи и проекты, и как это может происходить в принципе.

Особенности

Бетон сам по себе является прочным материалом, но усиливать его все равно нужно. Говоря просто, крепким бетонный блок является только на сжатие, а любое растяжение может обусловить его деформацию.

Что может случиться с бетонной стеной:

  • естественная усадка;
  • изменение вследствие пучения грунта;
  • работы по надстройке.

Технологически грамотное армирование с последующей бетонной заливкой решает ряд стратегических задач. К примеру, увеличивается прочность даже самой сложной конструкции (например, эркера либо полукруглых ступеней с их непростыми лекальными формами). Бетонные элементы постройки не так восприимчивы к термоскачкам после армирования стен.

Срок использования строения вырастает, а усиление прочности повышает возможные механические нагрузки на несущие конструкции.

А теперь к вопросу о сути самого армирования. Так называют внутреннее усиление блока, берутся для этого разные материалы: волокна либо прутки, фибра, композиты. Чтобы грамотно произвести армирование, помимо материалов потребуются раствор для заливки, инструменты для соединения каркасных элементов, опалубка, инструменты для трамбования состава.

Можно перечислить случаи, когда армировать стены точно необходимо.

  1. Трещины внешней стены. Объемы крупных трещин после армирования уменьшаются, а если трещины некрупные, то от них вовсе может не остаться и следа. Как профилактика появления трещин армирование также оптимальная мера.
  2. Неровности на стене. Большие перепады высоты плоскости нуждаются в маскировке, чтобы это сделать, нужно наложить толстый штукатурный слой. А ведь застывшая штукатурка тяжела сама по себе, и пласт без армирования может осыпаться или даже вздуться.
  3. Слишком гладкая стена. И такое случается – армирование поможет увеличить плотность прилегания раствора к стене.

Строительные работы осуществляются по четким стандартам (СНиП и не только). Так, существует целый ряд требований по конструктивному армированию стен, которые определяют их металлоемкость и другие показатели.

Арматура может быть расчетной и конструктивной, и все эти термины должны хотя бы базово пониматься людьми, которые ведут ремонт без привлечения профессионалов. Но с последними, конечно, все пройдет более успешно.

Основные способы

Вне зависимости от того, какой усиливающий материал будет применен, технологии процесса усиления могут быть вариативны.

  • Монолитное армирование. Бывает стальным либо композитным. В частном строительстве эта технология максимально востребована. Прутья сваривают или связывают в несколько уровней, опускают в опалубку и заливают бетонным составом. Прутковый каркас будет абсолютно неподвижен, прочен.

  • Сеточное. Строительная сетка ускоряет работы по армированию. Ее делают из проволоки, которая может быть стальной либо композитной. Для усиления бетонных стяжек этот вариант довольно продуктивен. Продают сетку в двухметровых картах, ширина полотна бывает разной (как и размер ячейки).

  • Волоконное. Другое название этого способа – дисперсное армирование. В данном случае используется именно фиброволокно. В раствор фибра включается на этапе затворения. Обычно таким вариантом пользуются, если нужно упрочить тонкий слой заливки, а также если укреплять приходится конструкцию со значительной механической нагрузкой.

Как замешивать фибру в раствор, в каком количестве ее добавлять – прописано на упаковке с составом.

Используемые материалы

И в этом тоже есть выбор. Рассмотрим основные варианты.

Фиброволокно

Это материал мелкой дисперсии, который всегда добавляется на этапе замешивания. Волокно встречается разного диаметра и длины, то есть имеется возможность подобрать материал с нужными показателями. Фибру делают на основе стали, стекла, базальта, а также полипропиленовых соединений.

Композитные полимерные сетки

У такой арматуры спектр исходников очень широк. И каждый год на рынке появляется какая-то новинка с привлекательными характеристиками. Сегодня в разряд самых ходовых можно включить базальтопластиковые и стеклопластиковые прутки, имеющие спиральную накрутку. Еще варианты – полиэтилентерефталат, а также углеводородная арматура.

Пока большой востребованностью эти материалы похвастаться не могут, но за счет низкого веса это обстоятельство может измениться.

Другие

По-прежнему популярны стандартные стальные прутки с нормированной длиной 11,75 м. Стальные стержни в массе бетона «чувствуют» себя уверенно, да и оба материала отлично сливаются друг с другом благодаря рифленой поверхности прутка. Стальная арматура внутри монолита помогает перераспределить нагрузку и не дает бетону растрескаться (как известно, металл имеет отличные показатели сопротивления на разрыв). Ну а бетон, что логично, защищает металл от коррозийной атаки.

Технология

Армирование призвано усилить конструкцию стены, оставив ее прочной. И начать нужно не с пошаговых действий, а с правил, не зная которых армировать нельзя в принципе.

  • Арматуру предполагается связывать вне стен опалубки. Устанавливать каркас можно крупными частями.
  • Там, где стержни будут пересекаться, прутья предстоит связывать. Но без особой жесткости. Все же малая подвижность узла должна сохраниться, иначе при бетонном растяжении проволока внутри может порваться, в результате чего целостность каркаса будет под ударом.
  • Прутьям в каркасе следует изначально задать строгое направление: либо горизонталь, либо вертикаль. Если угол наклона прутка сместится, случится сдвиг распределения нагрузки, то есть часть стены может разрушиться.
  • Чтобы снизить риски коррозийных процессов, в бетон добавляют особые присадки.
  • Когда каркас связан и стоит в опалубке, заливается раствор. Это делается единовременно по всему объему. Залитый монолит обязательно укрывают пленкой, и он остается нетронутым до полного застывания. Чтобы бетон не растрескался, первые дней 8-10 его увлажняют.

Теперь приведем пошаговую схему армирования подвальных стен.

  1. Приобретается проволока, диаметр которой 3 мм. Проще купить сетку в виде рулона.
  2. Готовится инструмент – кусачек вполне может быть достаточно, смотря, какие объемы работ. Но если найдется пистолет для вязки арматуры, это значительно ускорит рабочий процесс.
  3. Производятся расчеты (с чертежами, проектами), чтобы понять, какой будет толщина стен, учитывается, например, уровень залегания грунтовых вод. Так, если грунтовые воды от основания далеки, толщена стен подвала будет в пределах 20-40 см.
  4. Далее следует очистить опалубку, затем можно приступать к изготовлению сетки для армирования. Ячейки меньше 5 см недопустимы, ведь при заливке смеси в таком варианте могут образоваться пустоты.
  5. Арматурная сетка укладывается в опалубку. Если делать армирование в два слоя, в прочности стены можно будет не сомневаться. А соединить оба слоя сетки можно в шахматном порядке, через две ячейки. Соединение происходит проволокой того же диаметра. Арматура и ее элементы – это очень важно – не должны соприкасаться с опалубкой.
  6. Осталось проверить, правильно ли смонтирована арматура. Например, выверить ее строгую вертикальность с учетом допустимого отклонения не больше 2 мм.
  7. Наконец, заливается бетон, засыпается почва рядом со стенами.

Другая задача стоит перед строителем, если армировать приходится кирпичную кладку. Конструктивное решение армирования стенки из кирпича предполагает два варианта.

  • Первый – продольное армирование. Так сетку монтируют нечасто, делают это, когда кладут ограждающие конструкции и всяческие перегородки. Элементы армирующего слоя могут находиться с наружной либо внутренней стороны стены.
  • Второй – поперечное армирование. Наружные стены, колонны, перегородки в подвале, погребе и не только – вот когда используется данный вариант. Строители обычно отдают предпочтение просечным и вытяжным сеткам, как наиболее комфортным в работе. Можно использовать зизгагообразную сетку, которая укладывается в соседних рядах перпендикулярно.

И еще несколько советов по армированию уже железобетонных стен. Каркас арматуры в этой ситуации требует двухслойности, что не дает развиться стеновому изгибу под действием нагрузки. Нагрузки на сжатие являются основными, а значит, минимальная толщина арматуры должна быть 8 мм. И если строительство ведется малоэтажное, такой сетки достаточно.

Продольная арматура предполагает интервал в 20 см, а поперечная – в 35 см.

Для отделки готовых стен используются штукатурные сетки. Такие нужны, чтобы риск появления трещин свелся к нулю. Но и хорошее сцепление штукатурки со стеной – это тоже неплохой бонус армирования. Делать это необходимо, если толщина штукатурного слоя больше 2 см. Но даже если толщина меньше, армировать придется, если стены штукатурят до полной усадки дома.

И это только часть большой темы армирования, которое может быть Т-образным, затрагивать стыки двух видов материала, касаться стен возле проемов, наконец, со стен переходить в необходимость усиления стяжки пола. Перед работой, даже если она будет осуществляться руками рабочих, имеет смысл хотя бы немного узнать об особенностях процесса, чтобы увереннее его контролировать.

Об особенностях монтажа арматурного каркаса смотрите далее.

Качество арматурных работ

Содержание статьи:

  1. Контроль качеств арматурных работ;
  2. Требования к арматурным конструкциям и изделиям;
  3. Длина сварного шва арматуры.

Проверка и контроль

Проверка и контроль качества арматурных работ проводятся на всех этапах армирования:

  1. подготовительные работы;
  2. установка арматурных изделий;
  3. приемка выполненных работ.

Для контроля применяют визуальный и измерительный методы, а также технический осмотр.

Проверку осуществляют с использованием контрольно-измерительного инструмента: отвеса, рулетки линейки.

Для контроля качества арматурных работ на этапе подготовительных работ проверяют:

  • наличие документов о качестве (паспорт/сертификат);
  • качество арматурных изделий (в случае необходимости проводят замеры, а также отбор проб на испытания);
  • качество подготовки и отметки выполненного несущего основания;
  • правильность закрепления и установки опалубки.

На этапе установки арматуры контролируют:

  • порядок сборки элементов каркаса арматуры, качество выполнения вязки (сварки) узлов каркаса;
  • точность установки изделий из арматуры в плане и по высоте; надежность их фиксации;
  • величину защитного слоя бетона.

При приемке выполненных арматурных работ проверяют:

  • соответствие положения установленных арматурных изделий требуемому по проекту;
  • величину защитного слоя бетона;
  • надежность фиксации арматуры в опалубке;
  • качество выполнения вязки (сварки) узлов каркаса.

По результатам приемки выполненных работ составляется акт скрытых работ. Форму акта можно посмотреть в статье «Требования к законченным строительным конструкциям».

Требования к законченным арматурным конструкциям

Требования, которые предъявляются к законченным арматурным конструкциям, группируют по следующим направлениям контроля:

  1. требования защитного слоя бетона;
  2. требования к арматурным работам;
  3. предельные (максимальные) отклонения размеров арматурных конструкций от проектных размеров.

Требования для контроля защитного слоя

Предельные отклонения, мм

При проектной толщине защитного слоя бетона 15 мм отклонение при линейных размерах поперечного сечения конструкции (не более):

При проектной толщине защитного слоя бетона от 16 до 20 мм, отклонение при линейных размерах поперечного сечения (не более):

При проектной толщине защитного слоя бетона свыше 20 мм отклонение при линейных размерах поперечного сечения (не более):

Подробнее о величине защитного слоя при армировании железобетонных конструкций можно прочитать в отдельной статье «Проектирование арматуры».

Технические требования для контроля арматурных работ

расстояния (в мм) между отдельно установленными стержнями рабочей арматуры для :

— плит и стен фундаментов

расстояния ( в мм) между рядами арматуры для:

— плит и балок толщиной до 1м

— толщиной более 1м

при армировании отдельными стержнями, соединенными внахлестку без сварки, и при отсутствии в проекте указаний на длину нахлестки — не менее:

— для арматуры А240, А 300

— для арматуры А400

при армировании сварными сетками и каркасами: допускается установка
без сварки с перепуском на длину по проекту, но не менее — 250 мм

суммарной длины сварных швов на стыке стержней внахлестку (или на каждой половине стыка с накладками), мм :

для стержней класса А240:

— при двухсторонних швах

— при односторонних швах

для стержней класса А300 и А500:

— при двухсторонних швах

— при односторонних швах

Предел отклонений размеров арматурных изделий от проекта

габаритный размер и расстояние между крайними стержнями по длине арматурного изделия, мм :

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector