0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчики линейного перемещения принцип работы

Датчик перемещения. Принцип работы и область применения

Датчик перемещения — это прибор, предназначенный для определения величины линейного или углового механического перемещения какого-либо объекта. Разумеется, подобные приборы имеют колоссальное количество практических применений в самых разнообразных областях, поэтому существует множество классов датчиков перемещения, которые различаются по принципу действия, точности, цене и прочим параметрам.

По принципу действия датчики перемещения могут быть:

На основе эффекта Холла

Емкостные датчики перемещения

В основе работы датчиков данного типа лежит взаимосвязь ёмкости конденсатора с его геометрической конфигурацией. В простейшем случае речь идёт об изменении расстояния между пластинами вследствие внешнего физического воздействия (Рисунок 1). Поскольку ёмкость конденсатора изменяется обратно пропорционально величине зазора между пластинами, определение ёмкости при прочих известных параметрах позволяет судить о расстоянии между пластинами. Изменение ёмкости можно зафиксировать различными способами (например, измеряя его импеданс), однако в любом случае конденсатор необходимо включить в электрическую цепь.

Рисунок 1. Емкостной датчик линейного перемещения с изменяющейся величиной зазора

Другой схемой, где выходным параметром является электрическая ёмкость, является схема, содержащая конденсатор с подвижным диэлектриком (Рисунок 2). Перемещение диэлектрической пластины между обкладками конденсатора также приводит к изменению его ёмкости. Пластина может быть механически связана с интересующим объектом, и в этом случае изменение ёмкости свидетельствует о перемещении объекта. Кроме того, если сам объект обладает свойствами диэлектрика и имеет подходящие габариты — он может быть использован непосредственно в качестве диэлектрической среды в конденсаторе.

Рисунок 2. Емкостной датчик линейного перемещения с подвижным диэлектриком

Оптические датчики перемещения

Существует множество вариаций схем датчиков перемещения, основанных на различных оптических эффектах. Пожалуй, наиболее популярной является схема оптической триангуляции — датчик положения является, по сути, дальномером, который определяет расстояние до интересующего объекта, фиксируя рассеянное поверхностью объекта излучение и определяя угол отражения, что даёт возможность определить длину d — расстояние до объекта (Рисунок 3). Важным достоинством большинства оптических датчиков является возможность производить бесконтактные измерения, кроме того такие датчики обычно довольно точны и имеют высокое быстродействие.

датчик сигнальный измерительный

Рисунок 3. Оптический датчик перемещения на основе схему оптической триангуляции

В другой реализации оптического датчика, предназначенной для регистрации и определения параметров малых перемещений и вибраций, используется двойная решётчатая конструкция, а также источник света и фотодетектор (Рисунок 4). Одна решётка неподвижна, вторая подвижна и может быть механически закреплена на интересующем объекте или каким-либо способом передавать датчику его движение. Малое смещение подвижной решётки приводит к изменению интенсивности света, регистрируемой фотодетектором, причём с уменьшением периода решётки точность датчика возрастает, однако сужается его динамический диапазон.

Рисунок 4. Оптический датчик перемещения на основе дифракционных решеток

Дополнительными возможностями применения обладают оптические датчики, учитывающие поляризацию света. В таких датчиках может быть реализован алгоритм селекции объектов по отражательным свойствам поверхности, т.е. датчик может «обращать внимание» только на объекты с хорошей отражающей способностью, прочие объекты игнорируются. Разумеется, чувствительность к поляризации негативно сказывается на стоимости подобных устройств.

Индуктивные датчики перемещения

В одной из конфигураций датчика данного типа чувствительным элементом является трансформатор с подвижным сердечником. Перемещение внешнего объекта приводит к перемещению сердечника, что вызывает изменение потокосцепления между первичной и вторичной обмотками трансформатора (Рисунок 5). Поскольку амплитуда сигнала во вторичной обмотке зависит от потокосцепления, по величине амплитуды вторичной обмотки можно судить о положении сердечника, а значит и о положении внешнего объекта.

Рисунок 5. Индуктивный датчик перемещения на трансформаторе

Другая конфигурация имеет более простую схему, однако она пригодна лишь для небольшого количества приложений, где требуется определять незначительные перемещения или вибрации объектов, состоящих из ферромагнитного материала. В данной схеме интересующий ферромагнитный объект играет роль магнитопровода, положение которого влияет на индуктивность измерительной катушки (Рисунок 6).

Рисунок 6. Индуктивный датчик перемещения для объектов из ферромагнитных материалов

Ультразвуковые датчики перемещения

В ультразвуковых датчиках реализован принцип радара — фиксируются отражённые от объекта ультразвуковые волны, поэтому структурная схема обычно представлена источником ультразвуковых волн и регистратором (Рисунок 8), которые обычно заключены в компактный корпус. Определение временной задержки между моментами отправки и приёма ультразвукового импульса позволяет измерять расстояние до объекта с точностью, доходящей до десятых долей миллиметра. Наряду с оптическими, ультразвуковые датчики на сегодняшний день являются, пожалуй, наиболее универсальным и технологичным бесконтактным средством измерения. Использование этого принципа измерений опять же можно найти в детекторах обнаружения дефектов, только на этот раз уже в ультразвуковых дефектоскопах.

Рисунок 8. Ультразвуковой датчик перемещения

Датчики на основе эффекта Холла

Датчики этого типа имеют конструкцию подобную конструкции магниторезистивных датчиков, однако в основу их работы положен эффект Холла — прохождение тока через проводник, на который воздействует внешнее магнитное поле, приводит к возникновению разности потенциалов в поперечном сечении проводника.

Магниторезистивные датчики перемещения

В магниторезистивных датчиках перемещения используется зависимость электрического сопротивления магниторезистивных пластинок от направления и величины индукции внешнего магнитного поля. Датчик, как правило, состоит из постоянного магнита и электрической схемы, содержащей включённые по мостовой схеме магниторезистивные пластинки и источник постоянного напряжения (Рисунок 9). Интересующий объект, состоящий из ферромагнитного материала, перемещаясь в магнитном поле, изменяет его конфигурацию, вследствие чего изменяется сопротивление пластинок, и мостовая схема регистрирует рассогласование, по величине которого можно судить о положении объекта.

Рисунок 9. Магниторезистивный датчики перемещения

Оптические датчики положения и перемещения объектов – почему «ДА»

Практически каждый технологический процесс нуждается в Оптических датчиках положения и перемещения, которые благодаря принципу работы и широкому разнообразию моделей разных производителей, помогают избежать финансовых затрат и гарантируют качественную продукцию.

В сравнении с широко применяемыми в промышленности бесконтактными емкостными, индуктивными и ультразвуковыми датчиками положения, а также механическими концевыми выключателями, оптические датчики положения имеют ряд преимуществ:

  1. Бесконтактный метод контроля положения и перемещения объекта. Как следствие, отсутствует механический износ, дребезг контактов и ложные срабатывания;
  2. Зона срабатывания и обнаружения объекта от нескольких миллиметров до нескольких десятков метров в зависимости от типа датчика;
  3. Высокая скорость отклика. Датчики положения оптического типа с успехом применяются на конвейерных лентах, где объекты движутся с высокой скоростью и плотностью размещения на ленте. Датчики данного типа могут применяться не только для контроля объектов, но и для счета этих объектов. Частота переключений может достигать 30 кГц;
  4. Возможность обнаружения объектов очень малых размеров. Так как оптический луч оптических датчиков положения с помощью системы линз, диафрагм и оптоволоконных кабелей можно сфокусировать в очень тонкий пучок, это позволяет контролировать наличие объектов очень небольших размеров;
  5. Возможность обнаружения объектов из различных материалов. Если индуктивные и емкостные датчики накладывают определенные ограничения на такие характеристики контролируемого объекта как магнитные свойства и диэлектрическая проницаемость, то оптические датчики, при соответствующей настройке, с успехом обнаруживают объекты практически из любого материала. Оптические датчики положения используются в том числе и для обнаружения тонких и прозрачных объектов, таких как полиэтиленовая пленка. Обычно для этих целей используют датчики с видимым излучением красного цвета;
  6. Возможность настройки расстояния срабатывания для выборочного контроля и счета объектов, движущихся перед датчиком в несколько рядов;
  7. Наличие таймера срабатывания для подавления случайных оптических помех;
  8. Возможность обнаружения объектов с очень высокой температурой, например, литья, поковок, проката и т.п;
  9. Нечувствительность к магнитным полям, электростатическим помехам;
  10. Нечувствительность к ионизирующему излучению и возможность установки в крайне стесненном пространстве (для оптоволоконных оптических датчиков положения).

Три принципа действия оптических датчиков положения

Оптические датчики положения относятся к фотоэлектрическим датчикам, так как принцип их действия основан на обнаружении световых сигналов. При этом стоит понимать, что датчик может срабатывать как на свет, так и на затемнение.

В зависимости от того, на каком оптическом явлении основан принцип обнаружения объектов, оптические датчики положения делятся на три типа:

  • тип T – датчики с приёмом прямого луча от излучателя;
  • тип R – рефлекторные датчики с приемом луча, возвращенного от отражателя;
  • тип D – диффузионные датчики с приемом луча, рассеянно отраженного от объекта контроля.
Тип датчиков положенияРасстояние обнаружения объекта/ срабатыванияМатериал объекта контроляДостоинства метода измеренийТиповые области применения
Индуктивные датчики положениядо 60 ммМеталлические объектыВозможность работы в условиях загрязненной рабочей среды, высокая частота переключений (до 3 кГц), высокая селективность (срабатывает только на металлы). Возможность измерения сквозь непрозрачные стенкиМеталлообработка, автоматизированные склады, станкостроение и точная механика
Емкостные датчики положениядо 30 ммМеталлические и неметаллические объекты, жидкости, стеклоВысокая чувствительность и малая инерционность, возможность обнаружения объектов из практически любого материала. Возможность измерения сквозь непрозрачные стенкиПищевая и химическая промышленность
Оптические датчики положениядо 60 м для T-типа;
до 35 м для R-типа;
до 3 м для D-типа
Металлические и неметаллические объекты, жидкости, стеклоНаибольший диапазон расстояний срабатывания, высокая частота переключений (до 30 кГц), возможность обнаружения объектов из практически любого материала, возможность обнаружения объектов с высокой температурой и объектов очень малых размеровЭлектронная промышленность, конвейерные системы, контроль доступа и периметра, металлургия и др.
Магнитные датчики положениядо 120 ммОбъекты с магнитными свойствамиВозможность работы в условиях загрязненной рабочей среды, высокая селективность (срабатывает только на объекты с магнитными свойствами). Возможность измерения сквозь непрозрачные стенкиОпределение положения поршня пневмоцилиндров, автоматизированные склады и т.д.

К недостаткам оптических датчиков положения можно отнести:

  • Возможность ложных срабатываний при работе в условиях высокой запыленности, тумана, интенсивной внешней засветки, низких температур, сильной вибрации;
  • Невозможность обнаружения объекта через непрозрачную преграду или стенку резервуара или контейнера;
  • Трудоемкая процедура совмещения оптических осей излучателя и приемника у датчиков T-типа при их монтаже, особенно если расстояние между ними превышает несколько десятков метров;
  • Необходимость настройки чувствительности датчика у датчиков D-типа, в зависимости от отражающей способности поверхности контролируемых объектов;
  • Постепенная деградация излучателя (светодиода) датчика, из-за чего интенсивность его излучения постепенно падает, и со временем может потребоваться подстройка чувствительности датчика;
  • Наличие слепых зон у датчиков D и R-типа. Слепой называется зона от активной поверхности оптического датчика до минимального расстояния его срабатывания. В слепой зоне объект не обнаруживается датчиком.
Читать еще:  Создаем систему контроля утечки воды из подручных средств

Оптические датчики нашли широкое применение во многих отраслях промышленности благодаря своим высоким потребительским качествам, точности и высокой скорости обнаружения объектов, разнообразным исполнениям и относительно невысокой стоимости. Обилие различных аксессуаров и опций, таких как подогрев оптики, оптоволоконные удлинительные кабели, поляризационные фильтры, аналоговые, цифровые и дискретные выходные сигналы, лазерный излучатель вместо светодиодного существенно расширяют сферу применения данных датчиков как по условиям эксплуатации, так и по возможности их интеграции в существующую систему автоматизированного управления.

Сравнение индуктивных и ёмкостных датчиков положения

Автор: Mark Howard, Zettlex UK Ltd
Ссылка на оригинал: technical articles/inductive vs. capacitive_rev4.0
Перевод на русский язык подготовлен компанией АВИ Солюшнс.

Введение

Некоторые индуктивные и ёмкостные датчики выглядят очень похоже и неудивительно что инженеры-разработчики бывают сбиты с толку их сходством. И те и другие являются бесконтактными датчиками положения и построены на основе печатных плат. Тем не менее, физические принципы, лежащие в основе каждого типа датчиков, достаточно различны. В конечном итоге на практике это означает, что эти типы датчиков подходят для различных приложений. Эта статья объясняет физические принципы каждой технологии и сравнивает соответственно сильные и слабые стороны каждого подхода.

Принцип работы – Ёмкостные датчики

Когда исследователя Эвальда Юргена фон Клейста ударило электрическим током от лабораторного прибора в 1745 году, он внезапно понял, что есть возможность сохранять электрический заряд в больших количествах. Возможно, ненамеренно он построил первый в мире конденсатор. Конденсатор действует как накопитель электрической энергии и, как правило, состоит из двух проводящих пластин, разделённых непроводящим материалом (диэлектриком). В качестве диэлектрика обычно выступает воздух, пластик или керамика. Простая математическая модель конденсатора приведена на рис. 1.

Рис. 1 Простая модель конденсатора (С)

Диэлектрическая проницаемость ε включает в себя две составляющие — εr и ε0, где εr – это относительная магнитная проницаемость (иногда называемая диэлектрической постоянной) материала между пластинами и ε0 – электрическая постоянная (ε0 ≈ 8.854×10−12 Ф/м).

Многие датчики работают по ёмкостному принципу, в особенности тактильные датчики таких устройств, как планшеты и мобильные телефоны. Эти ёмкостные датчики определяют отсутствие или присутствие пальца человека и работают как альтернатива кнопочному переключателю. Присутствие пальца человека – или скорее воды в нём – приводит к изменению относительной диэлектрической проницаемости вызывающей в свою очередь изменение ёмкости.

Другой тип ёмкостного датчика – это ёмкостной датчик перемещения, который работает путём измерения изменений ёмкости происходящих из-за изменения размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость как при изменении расстояния между пластинами (d) так и при изменении площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат.

Другой тип ёмкостного датчика – это ёмкостной датчик перемещения. Принцип его работы основан на измерении величины емкости, которая изменяется при изменении размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость прямо пропорциональна как расстоянию между пластинами (d), так и площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат.

Для того чтобы хранить сколько-нибудь значительный заряд, расстояние между пластинами d должно быть существенно меньше площади пластин. Величина d обычно гораздо меньше 1 мм. По этой причине такая технология хорошо подходит для измерения нагрузки и тензометрических датчиков, поскольку может давать сравнительно большие изменения сигнала при маленьком измеряемом расстоянии. Похожим образом, ёмкостные линейные или вращающиеся датчики могут быть сконструированы таким образом, что перемещение вызывает изменение площади перекрытия пластин A. Например, один комплект пластин расположен на подвижной части датчика, а другой комплект расположен на статичной части. Как только два этих комплекта смещаются относительно друг друга, площадь А изменяется.

К сожалению, кроме изменения размеров конденсатора, ёмкость также чувствительна и к другим факторам. Если пластины конденсатора окружены воздухом то диэлектрическая проницаемость будет изменяться из-за влияния температуры и влажности, поскольку диэлектрическая постоянная воды отличается от воздуха. Близко расположенный объект, который изменяет проницаемость окружающего пространства, тоже будет вызывать изменения ёмкости. В случае тактильного датчика, вода в пальцах вызывает местное изменение проницаемости и, соответственно, срабатывание датчика. Вот почему работа нереагирующего тактильного датчика может быть улучшена, если намочить конец пальца.

За исключением случаев, когда окружающая среда датчика может быть герметично замкнута или жёстко контролируема, ёмкостные датчики не подходят для применения в жёстких условиях окружающей среды, где есть возможность проникновения посторонних веществ или больших изменений температуры. Неудивительно, что ёмкостные датчики мало подходят для применения в условиях, где высока вероятность образования конденсата при снижении температуры.

При неизменном физическом устройстве датчика, расстояние между пластинами датчика должно поддерживаться малым относительно размеров пластин конденсатора и выдерживаться в достаточно узком допуске. Это может накладывать очень высокие требования по механической точности установки датчика в конечное изделие и может быть непрактично и неэкономично, поскольку различие тепловых расширений, вибраций или механических допусков конечного изделия могут привести к изменению расстояния между пластинами и, таким образом, к искажению измерений.

Более того ёмкостный эффект основан на хранении электрического заряда на пластинах конденсатора. Если конечное изделие, куда устанавливается датчик, может создавать электростатическое поле в процессе своего перемещения – от трения, скольжения или вращения деталей – это может искажать показания датчика. В экстремальных случаях датчик не будет работать совсем или, что хуже, электростатические возмущения будут приводить к правдоподобным, но неверным показаниям датчика. В некоторых случаях обязательно заземление компонентов конечного изделия для рассеивания заряда с пластин датчика. Часто это является необходимым в ёмкостных датчиках угла, поскольку вращение вала создаёт статический заряд из-за относительного перемещения подшипников, шестерён, шкивов и прочее.

Принцип работы – Индуктивные датчики

В 1831 Майкл Фарадей открыл, что протекание переменного тока по одному проводнику индуцирует протекание тока в противоположном направлении во втором проводнике. С тех пор магнитная индукция стала широко использоваться как физический принцип построения датчиков для измерения положения и скорости – резольверы (СКВТ), сельсины и дифференциальный трансформатор для измерения линейных перемещений. Основы теории можно объяснить, рассматривая две катушки: передающую катушку (Tx), по которой протекает переменный ток, и приёмную катушку (Rx), в которой индуцируется ток.

Рисунок 2. Закон индукции Фарадея

Величина напряжения на приёмной обмотке пропорциональна относительным площадям, геометрии и смещению двух катушек. Однако, как и с ёмкостной технологией, на поведение катушек могут влиять и другие факторы. Одним из таких факторов является температура, но её влияние может быть нивелировано путём использования нескольких приёмных катушек и вычислении положения по отношению полученных сигналов (как в дифференциальном трансформаторе). Соответственно, даже в случае изменений температуры, её влияние на результат компенсируется, поскольку отношение сигналов является неизменным для любого положения.

В отличие от ёмкостных способов измерения, индуктивная технология гораздо менее подвержена влиянию посторонних частиц, таких как вода или грязь. Поскольку катушки могут находиться на относительно большом расстоянии друг от друга, точность установки составляет гораздо меньше проблем, и основные компоненты индуктивного датчика могут быть установлены с относительно свободными допусками. Это не только помогает снизить стоимость датчика и конечного изделия, но также позволяет использовать компоненты с защитным покрытием или заливкой, что позволяет датчикам противостоять таким внешним воздействующим факторам, как длительное погружение, сильные удары, вибрация или наличие взрывоопасной газовой или пылевой среды.

Индуктивные датчики обеспечивают надёжный, стабильный и устойчивый к внешним воздействиям подход к измерению положения и, таким образом, является предпочтительным выбором в приложениях, где жёсткие условия окружающей среды являются нормой, например, в военной технике, авиакосмической промышленности, промышленных установках и системах для нефтегазового сектора.

Несмотря на надёжность и устойчивость к внешним воздействиям, традиционные индуктивные датчики имеют ряд отрицательных сторон, которые препятствуют их более широкому распространению. В их конструкции есть проводники, намотанные на катушки, которые должны быть намотаны достаточно точно, чтобы обеспечить необходимую точность измерений положения. Для того, чтобы обеспечить наличие достаточно сильного электрического сигнала, необходимы обмотки с большим количеством витков. Такая конструкция с намотанной катушкой делает традиционный индуктивный датчик громоздким, тяжёлым и дорогим.

Инженеры, рассматривающие возможность применения индуктивных датчиков положения, часто задают вопрос о сложностях, связанных с электромагнитными шумами. В данном случае такая озабоченность является неуместной, если принять во внимание, что эти датчики, как резольверы, успешно используются много лет в жёсткой электромагнитной установке в корпусах электродвигателей для коммутации и управления скоростью. Что касается температурной стабильности, то устойчивость к жёстким условиям может быть достигнута при использовании дифференциального подхода, так, что электромагнитная энергия, поступающая в различные части системы, эффективно компенсирует друг друга. Вот почему индуктивные датчики, такие как резольверы и дифференциальные линейные трансформаторы, являются предпочтительным выбором в ответственных применениях, например, в гражданской авиации в течение многих лет.

Другой подход к индуктивным датчикам

Другой подход к индуктивным датчикам использует тот же физический принцип, но в нём применяются плоские конструкции на основе печатных плат вместо намотанных катушек. Именно этот подход и применяется Zettlex . Это означает, что обмотки могут быть изготовлены путём травления меди или при помощи нанесения на самые различные материалы подложки: полиэстерную плёнку, бумагу, эпоксидный слоистый пластик и даже на керамику. Такие печатные конструкции можно изготовить более точно, чем намотанные катушки. Вследствие чего достигается более высокая точность измерения при меньших затратах, размерах и массе, сохраняя в то же время все положительные свойства индуктивной технологии.

Рисунок 3. Пример грязного, но полностью работоспособного индуктивного датчика с плоской печатной обмоткой.

Датчики серии IncOders компании Zettlex – это бесконтактные устройства для прецизионного измерения угла. Датчик IncOder состоит из двух частей: статор и ротор, каждая из которых имеет форму плоского кольца. Большое центральное отверстие позволяет легко пропускать валы, оптические волокна, трубы и кабели, размещать токосъёмники. Индуктивные угловые энкодеры серии IncOder не требуют точной механической установки, скорее можно сказать, что ротор и статор должны быть просто привинчены в конечное изделие. Угловые энкодеры Zettlex не восприимчивы к посторонним веществам, что делает их идеально подходящими к жёстким условиям окружающей среды, где ёмкостные устройства работают ненадёжно.

Читать еще:  Типы ОПС, приборы и датчики

Заключение

Преимущества каждого из трёх подходов сведены вместе в таблице ниже. Можно сделать вывод, что из трёх приведённых подходов, нетрадиционный индуктивный подход, использующий печатные обмотки, обеспечивает наибольшее количество преимуществ.

Датчик линейных перемещений

Сегодня в разработке у ОКБ Вектор находится конкурентоспособный датчик линейных перемещений. Данная разработка выведена в отдельный проект – ООО ТрейсЛайн. Датчик по основным метрологическим и техническим характеристикам не уступает зарубежным аналогам и имеет более широкую область применения за счет уникальной конструкции. Данная конструкция должна обеспечить более высокую стойкость к тяжелым условиям эксплуатации: виброустойчивость, ударные нагрузки, высокое давления, температурный диапазон от -100 до 450℃, работа в радиационной и химической агрессивных средах.”

Датчик линейных перемещений. Что будет сделано?

Для функционирования датчика будет разработано программное обеспечение, интегрированное в электронную схему. Встроенное ПО осуществляет все функции по организации работы датчика, синхронизации взаимодействия его составных частей и их диагностику. ПО выполняет необходимые вычислительные операции и дальнейшую передачу данных на системы верхнего уровня (контролеры, ПК).

Разработка, серийное производство и применение высокоскоростных и высокоточных магнито-стрикционных датчиков линейных перемещений.

Преобразование механического перемещения позиционера в цифровую информацию о его положении. Датчики используются в различных отраслях промышленности, где необходимо точно определять положение объекта линейного перемещения (подвижной части механизма) в тяжелых условиях эксплуатации.

Определение точного положения объекта перемещения заключается в прецизионном измерении интервала времени между формированием импульса в катушку возбуждения и оцифровкой магнитострикционного импульса упругой деформации, поступившим на пьезоэлектрический приемник, с последующей программной обработкой.

Для цифровой обработки импульса применяются новейшие усилители и высокоскоростные преобразователи времени в “цифру”, алгоритмы поиска полезного сигнала используют различные математические методы оптимизации и фильтрации, а так же температурной коррекции изменения скорости звука. Применение уникальной архитектуры следящей системы поиска позволяет оперативно подстраивать параметры выходного импульса для удержания магнитострикционного сигнала в пределах требуемого значения. Вычисленная информация о положении перемещаемого объекта происходит внутри электронного блока датчика и передается в автоматизированные системы управления верхнего уровня посредством стандартных цифровых протоколов передачи данных.

Большая Энциклопедия Нефти и Газа

Датчик — линейное перемещение

Датчик линейных перемещений , показанный на рис. 11.181, а и б применяется в настоящее время в системах программного управления перемещениями рабочих органов металлорежущих станков ( порядок контролируемых перемещений — до 1 м, точность контроля — до 1 мкм. Вследствие неточности изготовления винтовых зубцов якоря и сердечников возникает погрешность измерения внутришагового перемещения. [2]

Датчики линейных перемещений используют изменение расстояния между пластинами. Статическая характеристика такого датчика является гиперболой, так как емкость конденсатора обратно пропорциональна расстоянию между пластинами. [4]

Подключив датчик линейных перемещений , так же как и круговой индуктивный датчик к счетно-измерительной электрической схеме, можно контролировать рассогласованность поступательно движущегося и вращающегося звеньев. [6]

В прецизионных муаровых датчиках линейных перемещений , принцип действия которых основан на муаровом эффекте, обычно применяют решетки, имеющие 50 штрихов на миллиметр, Выходы фотоприемников комбинируют попарно с целью получения двух синусоидальных сигналов, сдвинутых по фазе на 90, которые используют для формирования сигнала направления, а также интерполяционных сигналов. [7]

Например, датчик линейных перемещений типа ИМАШ обладает следующими техническими данными: пределы измерения — до 60 мм; максимальная допустимая скорость перемещения — 15 м / сек; омическое сопротивление реохорда — 140 ом / м; чувствительность датчика при токе питания 150 ма составляет 2 ма / мм. [9]

Принципиальные схемы датчиков линейных перемещений на магнитных усилителях приведены на рис. 35.14. Первый из них ( рис. 35.14, а) представляет собой дроссельный магнитный усилитель, работающий в режиме вынужденного намагничивания. Бели х — const, то ток, протекающий по резистору RH, будет постоянным и датчик работает, как стабилизатор среднего значения тока в нагрузке. При х — var происходит изменение тока / и напряжения U на резисторе Ян. Чем дальше удален магнит 2 от магнитопровода 1, тем меньше показания амперметра и вольтметра. [10]

Принципиальная схема датчика линейных перемещений с короткозамкнутым витком ( экраном) показана на рис. 35.18. При нейтральном расположении экрана 4 в силу полной симметрии системы магнитный поток, создаваемый обмоткой 2, поровну распределяется в левую и правую части магнито-провода J. ЭДС, наведенные этими потоками в сигнальных обмотках 3, равны между собой и направлены встречно. В итоге результирующий выходной сигнал Ux равен нулю. При смещении экрана 4 с нейтрали на некоторое расстояние х потоки в левой и правой частях системы будут различными, появится выходной сигнал, эквивалентный смещению на расстояние х экрана. Датчик прост и надежен, но чувствителен к колебаниям частоты и амплитуды питающего напряжения. [12]

Электрический сигнал от датчика линейных перемещений , чувствительным элементом которого является ферритовый сердечник дифференциально-трансформаторного датчика, поступает на электронный регистрирующий потенциометр. Изменение положения сердечника датчика отрабатывается двигателем потенциометра так, что каждому положению измерительного стержня датчика соответствует определенное положение вала дискового реохорда потенциометра. С валом реохорда жестко связаны кодовые диски преобразователя, преобразующие угловые перемещения вала реохорда в цифровой код. Преобразование осуществляется кодовыми дисками с неподвижными относительно них контактными щетками. [13]

На рис. 6.11 показана конструкция датчика линейных перемещений штокового типа . [14]

Датчик перемещения

Бесконтактный датчик, также сенсорный выключатель (англ. proximity sensor ) — позиционный выключатель, срабатывающий без механического соприкосновения с подвижной частью (машины). Позиционный выключатель — автоматический выключатель цепей управления, механизм управления которого приводится в действие при достижении подвижной частью машины заданного положения. [1] [2]

Отсутствие механического контакта между воздействующим объектом и чувствительным элементом обеспечивает ряд специфических свойств устройства.

Содержание

  • 1 Применение
    • 1.1 Промышленная автоматизация
  • 2 Принцип действия
  • 3 Инфракрасный датчик движения человека
    • 3.1 Применение
    • 3.2 Принцип работы датчика
  • 4 Литература
  • 5 Примечания

Применение

Ёмкостные бесконтактные датчики популярны в качестве клавиатур на бытовых приборах (например, варочных поверхностях). Их достоинства — единообразие дизайна, простота и дешевизна реализации, легкость герметизации.

Пирометрические бесконтактные датчики движения широко используются в системах охраны зданий.

Ультразвуковые датчики чаще всего можно встретить в системах помощи при парковке (парковочных радарах) автомобилей и в системах охраны территории.

Промышленная автоматизация

В промавтоматике бесконтактные датчики широко применяются:

  • в качестве концевых датчиков в станкостроении (в основном индуктивные датчики);
  • для регистрации (подсчёт, позиционирование, сортировка) предметов на конвейерах (применяются индуктивные и оптические датчики).

Для промавтоматики ГОСТом 26430-85 был введён термин «бесконтактный выключатель». Впоследствии ГОСТом Р 50030.5.2-99 термин заменён на «бесконтактный датчик» [3] . В настоящее время для данных изделий используются оба термина.

Принцип действия

  • Ёмкостные выключатели бесконтактные. Измеряют ёмкость электрического конденсатора, в воздушный диэлектрик которого попадает регистрируемый объект. Используются в качестве бесконтактных («сенсорных») клавиатур и как датчики уровня жидкостей.
  • Индуктивные выключатели бесконтактные. Измеряют параметры катушки индуктивности, в поле которой попадает регистрируемый металлический объект. Дальность регистрации типового промышленного датчика — от долей до единиц сантиметров. Характеризуются простотой, дешевизной и высокой стабильностью параметров. Широко применяются в качестве концевых датчиков станков.
  • Оптические выключатели бесконтактные. Работают на принципе перекрытия луча света непрозрачным объектом. Дальность типовых промышленных датчиков — от долей до единиц метров. Широко применяются на конвейерных линиях как датчик наличия объекта, используются также для контроля пространственных характеристик предмета (высота, длина, ширина, глубина, диаметр) и подачи сигнала на управляемый механизм при достижении указанного порога. Специфическая разновидность — лазерные дальномеры.
  • Ультразвуковые датчики. Работают на принципе эхолокации ультразвуком. Относительно дешевое решение позволяет измерять расстояние до объекта. Широко применяются в парктрониках автомобилей.
  • Микроволновые датчики. Работают на принципе локации СВЧ излучением «на просвет» или «на отражение». Получили ограниченное распространение в системах охраны как датчики присутствия или движения.
  • Магниточувствительные выключатели бесконтактные. Простая пара магнит — геркон или датчик Холла. Дешевы и просты в изготовлении. Широко применяются в системах контроля доступа и охраны зданий как датчики открывания дверей и окон.
  • Пирометрические датчики. Регистрируют изменения фонового инфракрасного излучения. Получили широкое распространение в системах охраны зданий как датчики движения.

Инфракрасный датчик движения человека

Применение

  • Автоматическое управление освещением
  • Различные автоматизированные системы управления (АСУ)

Принцип работы датчика

Принцип работы основан на отслеживании уровня ИК-излучения в поле зрения датчика (как правило, пироэлектрического). Сигнал на выходе датчика монотонно зависит от уровня ИК излучения, усредненного по полю зрения датчика. При появлении человека (или другого массивного объекта с температурой большей, чем температура фона) на выходе пироэлектрического датчика повышается напряжение. Для того чтобы определить, движется ли объект, в датчике используется оптическая система — линза Френеля. Иногда вместо линзы Френеля используется система вогнутых сегментных зеркал. Сегменты оптической системы (линзы или зеркала) фокусируют ИК-излучение на пироэлементе, выдающем при этом электроимпульс. По мере перемещения источника ИК-излучения, оно улавливается и фокусируется разными сегментами оптической системы, что формирует несколько последовательных импульсов. В зависимости от установки чувствительности датчика, для выдачи итогового сигнала на пироэлемент датчика должно поступить 2 или 3 импульса.

Особенности применения датчиков угловых перемещений на производстве

В данной статье будут затронуты вопросы применения энкодеров в современных системах АСУ ТП и некоторые аспекты культуры их производства, а также будут даны рекомендации по их эксплуатации.

Где используются датчики угловых перемещений

Энкодеры имеют довольно широкое применение.

Абсолютные и инкрементные энкодеры широко используются в металлургии, производстве бумаги, деревообработке, разнообразных линиях упаковки, станкостроении, энергетике и др.

Энкодеры устанавливаются на приводы прокатных станов, бумагоделательных и картонноделательных машин, а также пресспатов; на приводы координатных столов, продольно-резательных и поперечно-резательных (рубительных) машин, электрических задвижек, кранов, упаковочных агрегатов, лифтов, устройств выбора якоря на судах; на приводах суппортов и подачи токарных станков, в современных системах автоматического складирования, лесозаготовительных машинах и деревообрабатывающих станках, в системах ЧПУ и др.

Принцип действия энкодеров

Датчики угловых перемещений служат для измерения основных кинематических параметров работы электропривода: скорости и положения вала.

Читать еще:  Принцип работы индуктивных датчиков перемещения

В подавляющем большинстве современных систем регулируемого привода, позиционирования и контроля углового положения используются инкрементные и абсолютные энкодеры. Определенный рынок, в связи с некоторыми техническими особенностями остается за резольверами (в частности, из-за их толерантности к высоким и низким температурам: от –50оС и до +150оС).

Принцип работы фотоимпульсных энкодеров – цифровой. Свет проходит от группы светодиодов к группе фотодиодов через прозрачный диск с нанесенными метками. Абсолютный энкодер имеет уникальную комбинацию меток для каждого углового положения, инкрементный – более прост: одинаковые метки равномерно распределены по всему радиусу диска.

Обычно энкодер имеет также т.н. «нулевую метку», одну – на полный оборот диска. Эта метка имеет калибровочную функцию и не всегда требуется для простых задач измерения скорости. При вращении диска, механически связанного с приводным валом, каждое прохождение метки через светодиодную пару генерирует импульс. Эти импульсы в дальнейшем обрабатываются с помощью электронных устройств (программируемых логических контроллеров, преобразователей постоянного и переменного тока для электродвигателей, счетчиков).

Абсолютные энкодеры иногда имеют встроенный редуктор, который позволяет датчику не только определять точное значение углового перемещения в пределах одного оборота вала, но и отсчитывать количество оборотов вала (обычно с дискретностью 12 бит, т.е. 4096 оборотов вала). Данные абсолютные энкодеры, которые называются «абсолютными многооборотными», часто используются в прецизионных червячных приводах подачи.

Основным же преимуществом абсолютного энкодера над инкрементным является функция сохранения текущего значения углового перемещения вне зависимости от того подано питание на датчик или нет.

Питание датчиков в основном осуществляется постоянным током 5В или 24В.

Функциональными особенностями инкрементных и абсолютных энкодеров обусловлено различие между ними в цене. Из-за более сложной технологии нанесения меток на диск, а также из-за необходимости передавать большее количество данных (с соответствующим усложнением электроники) стоимость среднего абсолютного энкодера в 1,4-2 раза превышает стоимость инкрементного аналога.

Нельзя также не упомянуть широкую сферу применения энкодеров в современном сервоприводе. Но сервопривод является совершенно особым устройством, заслуживающим отдельной статьи. Отметим лишь, что в основном в сервоприводах крупнейших производителей используются абсолютные однооборотные энкодеры с разрешением 17 бит (131072 положения на оборот).

Основные параметры, необходимые для выбора датчиков угловых перемещений

  • Количество импульсов на оборот (обычно от 1 до 5000), количествово бит для абсолютных энкодеров (обычно 10, 12, 13, 25).
  • Вал или отверстие под вал (укажите также диаметр вала или отверстия).
  • Тип выходного сигнала (HTL, TTL, RS422, двоичный код и код Грея, SSI, Profibus DP, CAN. ).
  • Напряжение питания.
  • Длина кабеля/ тип разъема.
  • Дополнительные требования по крепежу (необходимость муфты, монтажного фланца, крепежной штанги и др.).

Требования к установке энкодеров и рекомендации по их эксплуатации

Необходимость точной центровки при установке датчиков – главное требование для обеспечения долговременной их службы. Исполнение энкодера с валом предусматривает установку прецизионной муфты, которая должна демпфировать три параметра: угловое отклонение, осевое биение и несоосность валов при установке. Жесткое соединение валов обычно не допускается, т.к. может привести к существенному сокращению срока службы, из-за износа подшипников. Энкодер с валом должен крепиться к специально изготовленному фланцу.

Исполнение датчика с полым ротором исключает использование муфты и фланца. Энкодер монтируется прямо на нерабочий конец вала двигателя и закрепляется от проворота за валом с помощью крепежной штанги, которая дает энкодеру необходимую подвижность для компенсации углового отклонения.

Нужно отметить, что из соображений удобства установки сейчас все большее распространение получают энкодеры с полым валом.

Срок службы хорошего современного датчика при правильной установке и подключении, а также средней скорости вращения приводного вала 1500 об/мин, – должен составлять не менее 50000 часов, т.е. почти 6 лет. Установка энкодера не в соответствии с требованиями производителя может привести к значительному сокращению службы датчика из-за износа подшипников. Любые другие воздействия, выходящие за рамки спецификации, как, например, удары по корпусу, сильная вибрация, перегрев/переохлаждение, также могут повлиять на срок службы энкодера.

Потенциометрические датчики: назначение, принцип действия.

Потенциометрические датчики предназначены для пре­образования механического перемещения в электрический сигнал.
Основной частью датчика является реостат, сопротивление кото­рого изменяется при перемещении движка, скользящего по проволоке (схема вклю­чения потенциометрического датчика показана на рис.4.1, а). Напряжение питания подается на всю обмотку реостата через неподвижные выводы этой обмотки. Вы­ходное напряжение, пропорциональное перемещению движка, снимается с одного из неподвижных выводов и с подвижного движка. Такая схема включения в электротехнике называется потенциометрической или схемой делителя напряжения.

Если сопротивление всей обмотки датчика обозначить через R, а сопротивление части этой обмотки, с которой снимается вы­ходное напряжение, через , то потенциометрическая схема включения датчика может быть представлена как последовательное соединение резисторов с сопротивлением (рис.4.1, б). Ток через обмотку датчика , а приложенное напряжение распределяется (делится) между последовательно соеди­ненными резисторами: Если сопротивление обмотки равномерно распределить по длине I, а перемещение
движка обозначить через х, то выходное напряжение датчика

Таким образом, выходной сигнал датчика пропорционален пере­мещению движка.

Электромагнитные датчики: назначение, принцип действия.

Электромагнитные датчики предназначены для преоб­разования перемещения в электрический сигнал за счет изменения параметров электромагнитной цепи. Эти изменения могут заклю­чаться, например, в увеличении или уменьшении магнитного со­противления магнитной цепи датчика при перемещении сердеч­ника. Если перемещается не сердечник, а обмотка, то происходит изменение потокосцепления обмотки. Таким образом, изменения в электромагнитной цепи датчика могут быть вызваны как пере­мещением элемента магнитной цепи (сердечника или якоря), так и перемещением элемента электрической цепи (обмотки). В ре­зультате таких перемещений изменяется индуктивность обмотки L или ее взаимоиндуктивность М с обмоткой возбуждения. Поэтому в технической литературе электромагнитные датчики часто назы­вают индуктивными.

Электромагнитные датчики обычно рассматривают как параметрические, поскольку величины L и М зависят от перемещения х: L = f(x), M=f(x). Но электромагнитные датчики с изменяющей­ся взаимоиндуктивностью можно отнести и к генераторному типу, поскольку в результате изменяется и ЭДС обмотки, т. е. E = f(x).

Простейший индуктивный датчик представляет собой дроссель с переменным воздушным зазором в магнитопроводе. На рис. 6.1 показаны две наиболее распространенные конструктивные схемы индуктивных датчиков на одном сердечнике. Это оди­нарные индуктивные датчики. На сердечнике 1 из электротех­нической стали размещена об­мотка 2, подключаемая к источ­нику переменного напряжения. Магнитный поток в сердечнике замыкается через якорь 3, ко­торый может перемещаться от­носительно сердечника 2. Якорь 3 механически связан с де­талью, перемещение которой необходимо измерить.

Эта деталь на рисунке не показана, но пе­ремещение х ее может происходить в вертикальном (рис. 6.1, а) или в горизонтальном направлении (рис. 6.1, б). Перемещение яко­ря изменяет магнитное сопротивление магнитной цепи, состоящей из сердечника, якоря и воздушного зазора б. Следовательно, из­менится индуктивность обмотки 2. Поскольку эта обмотка вклю­чена на переменное напряжение, ток в обмотке 2 будет определять­ся ее полным сопротивлением, в которое входит и индуктивное со­противление. С увеличением воздушного зазора магнитное сопро­тивление увеличивается, а индуктивность, индуктивное и полное сопротивления уменьшаются. Следовательно, ток в об­мотке увеличивается. Полагая ток I в обмотке за вы­ходной сигнал датчика, а перемещение х — за входной сигнал, имеем выходную характеристику в виде графика I=f(x)

Трансформаторные датчики

Принцип действия трансформаторных датчиков основан на изменении коэффициента взаимоиндукции обмоток при переме­щении якоря. Они относятся к электромагнитным датчикам гене­раторного типа.

Магнитные системы трансформаторных датчиков такие же, как и у рассмотренных в предыдущем параграфе индуктивных датчиков. От­личие заключается лишь в том, что до­бавляется еще обмотка, с которой и снимается выходной сигнал. Благода­ря этому в трансформаторных датчи­ках отсутствует непосредственная элек­трическая связь между цепью питания и измерительной цепью. Существует связь лишь за счет магнитного поля (трансформаторная связь), что позво­ляет выбором числа витков выходной обмотки получить любой уровень выходного напряжения.

Пример: Обмотка возбуждения w1 питается напряжением U1, ко­торое создает в магнитопроводе переменный магнитный поток Ф. Во вторичной обмотке w2 индуцируется ЭДС E2, значение кото­рой зависит от величины воздушного зазора б. Максимальная ЭДС Е2 получается при =0, поскольку при этом магнитное со­противление замкнутого магнитопровода минимально и по нему проходит максимальный магнитный поток Ф. С увеличением ! уменьшаются магнитный поток и соответствующая ему ЭДС E2.

Трансформаторные датчики используются для измерения линейных перемещений, давлений, расходов и др.

Датчик линейных перемещений

Сегодня в разработке у ОКБ Вектор находится конкурентоспособный датчик линейных перемещений. Данная разработка выведена в отдельный проект – ООО ТрейсЛайн. Датчик по основным метрологическим и техническим характеристикам не уступает зарубежным аналогам и имеет более широкую область применения за счет уникальной конструкции. Данная конструкция должна обеспечить более высокую стойкость к тяжелым условиям эксплуатации: виброустойчивость, ударные нагрузки, высокое давления, температурный диапазон от -100 до 450℃, работа в радиационной и химической агрессивных средах.”

Датчик линейных перемещений. Что будет сделано?

Для функционирования датчика будет разработано программное обеспечение, интегрированное в электронную схему. Встроенное ПО осуществляет все функции по организации работы датчика, синхронизации взаимодействия его составных частей и их диагностику. ПО выполняет необходимые вычислительные операции и дальнейшую передачу данных на системы верхнего уровня (контролеры, ПК).

Разработка, серийное производство и применение высокоскоростных и высокоточных магнито-стрикционных датчиков линейных перемещений.

Преобразование механического перемещения позиционера в цифровую информацию о его положении. Датчики используются в различных отраслях промышленности, где необходимо точно определять положение объекта линейного перемещения (подвижной части механизма) в тяжелых условиях эксплуатации.

Определение точного положения объекта перемещения заключается в прецизионном измерении интервала времени между формированием импульса в катушку возбуждения и оцифровкой магнитострикционного импульса упругой деформации, поступившим на пьезоэлектрический приемник, с последующей программной обработкой.

Для цифровой обработки импульса применяются новейшие усилители и высокоскоростные преобразователи времени в “цифру”, алгоритмы поиска полезного сигнала используют различные математические методы оптимизации и фильтрации, а так же температурной коррекции изменения скорости звука. Применение уникальной архитектуры следящей системы поиска позволяет оперативно подстраивать параметры выходного импульса для удержания магнитострикционного сигнала в пределах требуемого значения. Вычисленная информация о положении перемещаемого объекта происходит внутри электронного блока датчика и передается в автоматизированные системы управления верхнего уровня посредством стандартных цифровых протоколов передачи данных.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector